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Numerous studies have demonstrated the impact of organic cation (OCTs; SLC22 family) 

and anion transporters (OATs; SLC22 family) on the efficacy and safety of clinically important 

therapeutics. To be specific, OCTs and OATs have been identified as determinants for uptake into 

and secretion from enterocytes, hepatocytes and renal proximal tubular cells, and are frequent sites 

of drug-drug interaction (DDI). In addition, OCTs expressed in brain are components of the low-

affinity, high capacity clearance pathway (uptake-2) for biogenic monoamine neurotransmitters. 

As a result, OCTs may represent novel targets for mood disorders.  
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The inhibitory effects of several therapeutic agents, designed drugs and novel compounds 

were assessed on the function of OCTs/Octs and OATs/Oats. Among these compounds, the 

anthraquinone rhein showed significant inhibition on hOATs. While the antituberculosis drug 

ethambutol, the herbal products matrine and oxymatrine, synthetic cathinones, and all quinazoline 

and guanidine compounds produced significant inhibition on hOCT activity with most IC50 values 

in the micro- and even nanomolar ranges.  

Considering the clinically relevant unbound concentrations in biofluids, significant DDI 

potentials were found for rhein, ethambutol, matrine, oxymatrine and several synthetic cathinones 

affecting enterocytes, hepatocytes and/or proximal tubules. As hOCT2 and hOCT3 may participate 

in modulating neurotransmitter homeostasis in the CNS, these findings also suggested that the 

CNS pharmacological effects of synthetic cathinones, quinazoline and guanidine compounds 

might be due to their inhibitory effects on OCTs; although their impact may be limited solely to 

clearance of these compounds. Based upon their in vitro OCT/Oct inhibition profiles, three lead 

quinazoline and guanidine compounds were chosen for in vivo studies. Potent antidepressant-like 

effects of one lead hOCT-interacting compound (KEO-099) were re-confirmed in the tail 

suspension test. While in vivo results of the two newly identified hOCT-interacting lead 

compounds were somewhat less clear. 

Finally, homology modeling and docking studies for hOCT3 identified key amino acid 

residues that might be involved in interaction between hOCT3 and small molecules. Subsequent 

experiments confirmed a competitive mode of interaction between MPP+ and lead compounds on 

hOCT3. Thus, preliminary analysis indicates our hOCT3 homology model can be used to support 

rational drug design and high-throughput screening of novel hOCT substrates/inhibitors.   
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CHAPTER 1 

 

 

THE SLC22 TRANSPORTER FAMILY: NOVEL INSIGHTS TO ROLES IN DRUG 

EFFICACY, DRUG-DRUG INTERACTIONS AND MOOD DISORDERS 

 

  

 

 

1.A  OVERVIEW OF ORGANIC CATION AND ANION TRANSPORTERS 

Remarkable progress has been achieved in understanding the vital role of transporters in 

mediating transcellular movement of endogenous and exogenous substances in the body [1]. 

Among these transporters, organic cation (OCTs) and anion transporters (OATs), belonging to the 

solute carrier 22 (SLC22) family, interact with hundreds of cationic, anionic and zwitterionic 

organic molecules [1-3]. OCTs and OATs are characterized by 12 α-helical transmembrane 

domains (TMDs), a large extracellular loop located between TMDs 1 and 2, a large intracellular 

loop between TMDs 6 and 7, and intracellular N- and C-termini [4]. OCTs and OATs utilize 

different mechanisms to transport organic charged molecules across the cell membranes (Figure 

1.1). Uptake of organic cations into the negatively charged intracellular environment is 

electrochemically a downhill process, and OCTs utilize this gradient as their driving forces 

functioning as facilitated diffusion carriers [5]. For uptake, OATs function as tertiary active 

transporters that are indirectly coupled to Na+/K+-ATPase and Na+/dicarboxylate cotransporter 

function (Figure 1.1). They utilize the stored energy of α- ketoglutarate (α-KG) gradient to drive 

organic anion exchange [2, 6]. The first SLC22 family member, Oct1, was cloned from rat kidney 
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in 1994, and Oat1 was cloned from rat kidney in 1997 [7-9]. Three major OCT subtypes (i.e., 

OCT1, OCT2, and OCT3), and five major OAT subtypes (OAT1-4 and URAT1), as well as 

OCT/OAT orthologs, have been identified [2, 3]. Extensive investigations have focused on the 

structure, regional distribution and function of OCTs and OATs [2, 3]. The expression of OCTs 

and OATs have been confirmed in a number mammalian species such as human, mouse, rat and 

rabbit [2-4]. OAT1-3 and OCT1-3 mediate cellular entry or reuptake of small organic anions and 

cations, respectively [2, 3, 6]. The role of OAT4 in renal secretion and absorption is less well 

defined [2, 6].         

While isolated from kidney, it has now been confirmed that OCT1/Oct1 exhibit a broad 

tissue distribution in peripheral organs. In humans, OCT1 showed strongest mRNA expression in 

liver compared to any other tissues [10]. A recent study using a quantitative proteomics approach 

showed that the protein expression of OCT1 in human liver appears to be greater than any other 

hepatobiliary transporters, including BCRP, BSEP, MATE1, MDR1, MRP2, MRP3, NTCP, 

OATP1B1, OAPT1B3 and OATP2B1 [11]. In rodents, marked mRNA and protein expression of 

Oct1 was found in liver, kidney and intestine [10]. OCT1/Oct1 was located in the membrane of 

these tissues, e.g. sinusoidal membrane of hepatocytes and basolateral membrane of enterocytes 

[3]. OCT1/Oct1 has a broad substrate specificity. Hundreds of clinical therapeutics, such as 

metformin, lamuvidine, acyclovir, ganciclovir, pentamidine and furamidine, have been identified 

as substrates and/or inhibitors [4]. 
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Figure 1.1 Renal cell model depicting the various driving forces for organic cation and anion 

transport and the SLC22 transporters studied in this work.   

 

Upper panel: schematic model of the transport processes associated with uptake and efflux of 

organic cations and anions. Lower panel: SLC22 transporters expressed in the proximal tubular 

cells in kidney. α-KG, α-ketoglutarate; OA-, organic anion; OC+: organic cation; OAT: organic 

anion transporter; OCT: organic cation transporter.  
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Oct2 was cloned from rat kidney in 1996 [12]. Later, OCT2/Oct2 was identified in human, 

rat, mouse, rabbit and pig [13]. Unlike OCT1/Oct1, OCT2/Oct2 is mainly located in kidney, with 

marked expression at the basolateral membrane of proximal tubular cells. OCT2/Oct2 plays an 

important role in renal active secretion of cationic substances [3]. Although the expression of 

OCT2/Oct2 has been found in a variety of organs including kidney, small intestine, lung, skin, 

brain and choroid plexus, mRNA and immunohistochemical evidence suggested that OCT2/Oct2 

is not expressed in human or rodent liver [3]. Evidence for overlapping substrate specificity was 

observed between OCT1 and OCT2. Typical substrates and inhibitors for OCT2 include 

endogenous substances (e.g. choline, dopamine (DA), norepinephrine (NE), epinephrine, 

serotonin (5-HT), and histamine H2 receptor antagonists (e.g. cimetidine, famotidine, and 

ranitidine), and anti-cancer (e.g. cisplatin) and antihypertensive (e.g. debrisoquine) agents [13]. 

In 1998, OCT3/Oct3 was cloned from both human central nervous system (CNS) and rat 

placenta [14, 15]. Two years later, mouse Oct3 was cloned from kidney [16]. Compared with 

OCT1/Oct1 and OCT2/Oct2, OCT3/Oct3 exhibits a wider tissue expression. In addition to liver 

and kidney, OCT3/Oct3 was identified in heart, skeletal muscle, brain, small intestine, liver, lung, 

kidneys, urinary bladder, mammary gland, cornea skin, blood vessels and tumor cells [4]. OCT3 

protein was localized to the basolateral membrane of the trophoblast in placenta [17], the 

sinusoidal membrane of hepatocytes [18], the apical membrane of enterocytes [19] and the luminal 

membrane of lung epithelial cells [20]. It is involved in the uptake of organic cationic molecules 

into these tissues. OCT3/Oct3 showed great similarity with OCT1/Oct1 and OCT2/Oct2 in terms 

of substrate specificity, and a broad range of endogenous and exogenous organic cations have been 

proved as its substrate and/or inhibitors [4]. 
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rOat1 was cloned from rat kidney using the Xenopus oocyte expression system in 1997 [7, 

9]. Several other Oat1 orthologs were later identified in mouse, C. elegans, flounder, rabbit pig 

and human [21-28]. Oat1 mRNA was expressed abundantly in kidney, olfactory mucosa and 

choroid plexus [29-31]. In addition, rOat1 was targeted to the basolateral membrane of renal 

tubules using an Oat1/green-fluorescent protein fusion construct [32]. Immunohistochemical 

studies confirmed the basolateral expression of hOAT1, rOat1 and mOat1 in the proximal tubule 

cells [7, 9, 25]. Interestingly, male mice expressed a higher level of mRNA for mOat1 than female 

mice [33]. hOAT1/mOat1 mediates transport of a broad variety of drugs and endogenous 

compounds including nonsteroidal anti-inflammatory drugs (ibuprofen, indomethacin and 

ketoprofen), antivirals (e.g., adefovir and cidofovir), histamine H2-blockers (e.g., cimetidine), and 

endogenous compounds (e.g., prostaglandin E2, α-KG and urate) [6].     

rOat2 and hOAT2 mRNA are expressed in both liver and kidney, while mOat2 mRNA is 

predominantly expressed in kidney with a weaker expression in liver [34, 35]. The protein of 

hOAT2 was immunolocalized to the basolateral membrane of renal proximal tubules [36]. 

hOAT2/mOat2 function is the least studied of all the OATs, but identified substrates include 

glutarate, methotrexate, bumetanide and indomethacin [6].  

rOat3 was isolated from rat brain in 1999 [37], and its orthologs were later identified in 

various tissues in mouse, rabbit, pig, and human [29, 38, 39]. The mRNA of mOat3 was abundantly 

expressed in kidney, eye tissues and brain [40], while rOat3 mRNA was detected in kidney, liver 

and brain [41]. On the contrary, a predominant expression of hOAT3 mRNA was noted in human 

kidney, brain and skeletal muscle, with no signal detected in liver [42]. Immunohistochemistry 

demonstrated that hOAT3 and rOat3 are expressed on the basolateral membrane of the renal 
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proximal tubule [38, 43]. OAT3/Oat3 shares a high similarity with OAT1/Oat1 and OAT2/Oat2 

in terms of substrate specificity [6].  

hOAT4 mRNA is only expressed in the kidney and placenta of higher primates [44-46]. It 

was demonstrated that hOAT4 was targeted to the apical membrane of renal proximal tubule using 

immunohistochemistry [44, 47]. In placenta, hOAT4 protein was localized to the basolateral 

membrane of the syncytiotrophoblast [42, 48]. Studies suggested that a broad variety of drugs 

interact with hOAT4 as substrates or inhibitors, including nonsteroidal anti-inflammatory drugs 

(ibuprofen and ketoprofen), furosemide, methotrexate, penicillin G and probenecid [6].  

1.B EXPRESSION OF ORGANIC CATION AND ANION TRANSPORTERS IN BRAIN  

The mammalian brain has its own security system, known as the blood-brain barrier (BBB) 

and the blood-cerebrospinal fluid (CSF) barrier to protect it from the circulating metabolites, drugs, 

toxins and blood-borne pathogens [49]. In brain, choroid plexuses (CPs) are localized in the 

ventricular system [50]. They occur in each of the four major cisternae, which are developed from 

the median wall of the lateral ventricles and the roof of the third and fourth ventricles [50]. As a 

tight epithelial barrier, they form the interface between the blood and the CSF [51]. In the CNS, 

CPs are the main site of secretion of the CSF [52]. They are also involved in transporting 

compounds into or out of brain. Previous studies have demonstrated that OCTs and OATs are 

expressed in the CPs [52]. The mRNA of Oat1, Oat2 and Oat3 were detected in the CPs of mice 

and rats [29, 31, 41, 53]. In addition, the protein expression of rOat1 and rOat3 were identified on 

the apical CP membranes using green fluorescent fusion proteins, Western blot analysis, and 

immunohistochemical staining [31, 54]. Furthermore, significantly impaired accumulation of OAT 

substrates such as fluorescein-methotrexate was observed in isolated choroid plexus tissues from 
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Oat3 knockout mice as compared with wild-type mice [29, 55]. The active transport of cationic 

compounds, including choline and quinacrine in rat choroid plexus cells were also observed, 

indicating a specific mechanism for organic cation transcellular movement as well (Table 1.1) [56, 

57]. A further study confirmed that mRNA expression of Oct2 and Oct3, but not Oct1, was 

detected in rat CP, and Oct2 was located in the apical membrane of rat CP epithelial cells using an 

Oct2/green fluorescent protein fusion construct [1]. However, Choudhuri et al. reported that 

mRNA level of Oct1 and Oct3 was detectable in rat CP, while Oct2 expression was virtually 

nonexistent in CP [58]. In mouse, the mRNA expression of Oct2 has been identified in CP, while 

the expression of Oct1 and Oct3 were not detectable [59]. However, the mRNA of OCT1, OCT2, 

and OCT3 is expressed in human CP, and OCT1 was found as the most abundant transporter 

among the three transporters [59].   

In addition to blood-CSF barrier, BBB is a highly selective barrier that separates the 

circulating blood from the brain extracellular fluid in the CNS. Vessel endothelial cells are 

connected by tight junctions producing an extremely high electrical resistivity; therefore, 

transporters play a vital role in regulating exchange of endogenous and exogenous substances 

between blood and brain [60]. The expression of Oat3 and OCTs/Octs have been identified in 

human and rodent, while the results are controversial (Table 1.2) [52, 61, 62]. Several studies have 

reported the mRNA expression of mOat3 and rOat3 in brain capillaries, and the protein expression 

of mOat3 and rOat3 was localized to the basolateral membrane of brain capillary endothelial cells 

using western blotting and immunohistochemical analysis [63-66] Lin et al. studied the cellular 

localization of OCT1/Oct1 and OCT2/Oct2 in isolated brain microvessel endothelial cells 

(BMECs) from human, rat, and mouse [61].  Both mRNA and protein expressions of OCT1/Oct1 

and OCT2/Oct2 were observed in BMECs from these species, as well as in immortalized adult rat 

http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Extracellular_fluid
http://en.wikipedia.org/wiki/Tight_junction
http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
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brain endothelial cells [61, 67]. In addition, immunocytochemistry showed that these OCTs/Octs 

were mainly expressed on the luminal side of BMECs, which was confirmed by siRNA 

knockdown of OCT1/Oct1 and OCT2/Oct2 in primary BMECs [61]. In contrast, another study 

failed to measure Oct1 and Oct2 mRNA expression by quantitative PCR analysis in freshly 

isolated mouse brain capillaries, except for a negligible level of Oct3 mRNA [62]. Additionally, 

no capillary associated fluorescence was detected by immunocytochemistry in brain sections [62]. 

Several recent studies investigated the expression of OCT1, OCT2 and OCT3 in human blood 

brain barrier. Dickens confirmed that OCT1 and OCT3 mRNA expression was detectable in 

hCMEC/D3 cells, a model of the human blood brain barrier; while OCT2 mRNA expression was 

undetectable [68]. The protein expression of OCT1 in hCMEC/D3 cells was confirmed by 

immunoblotting [68]. Another study demonstrated that the mRNA for OCT3 was presented in 

human brain vascular smooth muscle cells, while the mRNA of OCT1 and OCT2 was absent [69]. 

Finally, a recent study showed that mRNAs of OCT1, OCT2 and OCT3 were detected in isolated 

human brain microvessels and the protein expression of OCT3 was verified by 

immunofluorescence staining [70]. Friedrich et al. reported that Oct1, but not Oct2 or Oct3, was 

expressed in the rat brain microvessel endothelial cell line RBE4 by northern blotting and RT-PCR 

[71]. However, another independent study showed a low mRNA level of Oct2 and Oct3, in rat 

brain capillary endothelial cell line TR-BBB13 [72]. In mouse brain microvessel cell line MBEC4, 

Oct2 but not Oct1 mRNA was identified [73]. Although these studies showed conflicting results, 

which appear to be dependent on experimental models (cell lines or tissues), these data support 

that OCTs/Octs play an active role in the CNS permeation of organic cations. Further work is 

necessary to validate these in vitro models, measure the expression of OCTs/Octs, and 

quantitatively evaluate their contribution in mediating brain uptake of organic cations in vivo. 
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Interestingly, a variety of studies demonstrated that OCT2/Oct2 and OCT3/Oct3 are also 

expressed in the neurons (Figure 1.2, Table 1.3). Busch et al. quantified OCT2 expression in human 

brain tissues, and they found that mRNA and protein expression of OCT2 were identified in 

neurons in the cerebral cortex and various subcortical nuclei [74]. Another study showed OCT3 

mRNA expression in various parts of human brain, including spinal cord, medulla oblongata, 

caudate nucleus, cerebral cortex, hippocampus, substantia nigra, medulla oblongata, cerebellum, 

nucleus accumbens and Pons [75]. A recent study also reported that mRNA expression of OCT2 

and OCT3 was quantifiable in a human astrocytoma-derived cell line, 1321N1 [76]. As rodents 

are widely used animal models for neurological study, extensive investigations have been 

conducted to exhibit the distribution of Oct2 and Oct3 in mouse and rat brain. 

In mouse brain, the mRNA and protein of Oct1 were found in brain stratum and cerebral 

cortex (Table 1.4) [67]. A high level of protein expression of Oct2 was found in the frontal cortex, 

hippocampus and amygdale [67, 77], which was consistent with a previous study shown that Oct2 

mRNA expression was observed in the cerebellum and hippocampus (Table 1.4) [78]. Oct2 protein 

expression was also detected in some aminergic neuron-containing areas including the locus 

coeruleus (most noradrenergic neurons) and dorsal raphe (some serotonergic neurons) [77]. 

However, Oct2 expression was not observed in substantia nigra or ventral tegmental area [77]. A 

recent study confirmed Oct2 expression in mouse brain (infralimbic cortices, hippocampus, 

amygdala, dorsomedial and arcuate nuclei of hypothalamus) [79]. In addition to Oct1 and Oct2, 

Oct3 was widely distributed in mouse brain. In 2004, Vialou et al. reported that OCT3 was 

distributed throughout the brain and highly expressed in circumventricular organs such as area 

postrema and subfornical organ [80]. Another study showed Oct3 mRNA expression in 

raphe nuclei, striatum and thalamus, implicating monoaminergic pathways [78]. Further studies 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
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focused on expression of mOct3 in neurons and astrocytes [80, 81]. According to Vialou et al., 

Oct3 protein expression was identified in dopaminergic neurons of substantia nigra compacta, non-

aminergic neurons of the ventral tegmental area, substantia nigra reticulata, locus coeruleus, 

hippocampus and cortex, as well as the astrocytes in the substantia nigra reticulata, hippocampus 

and hypothalamic nuclei [80]. However, Cui et al. claimed that Oct3 was expressed in the 

nigrostriatal astrocytes, but not in the astrocytes from regions such as cerebellum, hippocampus, 

and cortex [81]. Additionally, no Oct3 expression was observed in dopaminergic structures from 

ventral midbrain and striatum [81].  

In 1998, Oct3 mRNA expression was identified from rat brain tissue, especially in 

cerebellum, hippocampus, pontine nuclei and cortex (Table 1.4) [82]. Ten years later, several 

groups confirmed that Oct3 protein expression was throughout the rat brain, with the highest level 

observed in the superior and inferior colliculi, islands of Calleja, subiculum, lateral septum, lateral 

and dorsomedial hypothalamic nuclei, granule cell layers of the main and accessory olfactory bulbs, 

the cerebellum, the retrosplenial granular cortex, circumventricular organs, and the linings of all 

cerebral ventricles [83, 84]. A further study from Gasser’s group showed that Oct3 was expressed 

in most neurons of the intercalated cell groups of the amygdala of rat brain, and it shows co-

distributed with the areas of dense D1 receptor expression [85]. Oct2 was found to be localized in 

cholinergic nerve terminals (C-terminals) and endplates that correspond to the presynaptic 

terminals of cholinergic motoneurons of the anterior horn [86]. In addition, Oct2 might also exist 

on synaptic vesicles at presynaptic terminals, based on the results from immunoelectron 

microscopy [86]. 

In summary, both Oct2 and Oct3 were expressed in the main aminergic projection regions 

in rodent brain, including the cortex, hippocampus, thalamus, hypothalamus, amygdala and 

javascript:void(0);
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hindbrain [74, 77, 80, 83]. They also showed marked expression in aminergic nuclei, raphe, locus 

coeruleus and the tuberomammillary nucleus [74, 77, 80, 83]. However, OCT2/Oct2 and 

OCT3/Oct3 showed differences in distribution (subregions and nuclei) and relative expression 

levels. OCT3 showed relatively higher expression in circumventricular organs [80, 87] and Oct3 

might be the only OCT isoform expressed in dopaminergic nuclei substantia nigra [83]. In addition, 

the expression of Oct3 in the astrocytes in the dorsomedial hypothalamus nucleus and substantia 

nigra indicated that OCT3/Oct3, rather than Oct2, might be involved in mediating extracellular 5-

HT level [80, 81, 88]. 



www.manaraa.com

 

 

12 
 

Table 1.1 Expression of OCTs/Octs in choroid plexus.   

 Species Level Expression Localization Techniques References 

OCT1/Oct1 

Mouse mRNA －  RT-PCR [59] 

Rat mRNA ?  RT-PCR [1, 58] 

Human mRNA +  RT-PCR [59] 

OCT2/Oct2 

Mouse mRNA +  RT-PCR [59, 67] 

Rat 

mRNA ?  RT-PCR [1, 58, 78] 

Protein + 
Apical Membrane of CP 

epithelial cells 

Green Fluorescent 

Protein Fusion 
[1] 

Human mRNA +  RT-PCR [59] 

OCT3/Oct3 

Mouse mRNA －  RT-PCR [59, 67] 

Rat 
mRNA and 

protein 
+  

RT-PCR and 

Immunohistochemistry 
[1, 58, 78, 89] 

Human mRNA +  RT-PCR [59] 

＋
: indicates transporter expression;  

－
: indicates no expression detected. 

? : controversial study results.   
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Table 1.2 Expression of OCTs/Octs in blood brain barrier.   

 Species Level Expression Localization Techniques References 

OCT1/Oct1 

Mouse 

mRNA ?  RT-PCR [62, 67, 73] 

Protein + 
Luminal and abluminal 

 side of  BMECsa 

Confocal microscopy, western blot 

and immunohistochemistry 
[61, 67] 

Rat 

mRNA +  Northern blotting and RT-PCR [71, 72] 

Protein + 
Luminal and abluminal 

 side of  BMECs 

Confocal microscopy 

 and western blot 
[61] 

Human 

mRNA +  RT-PCR [68, 70] 

Protein + 
Luminal and abluminal 

 side of  BMECs 
Confocal microscopy and western blot [61] 

 

OCT2/Oct2 

Mouse 

mRNA ?  RT-PCR [62, 73] 

Protein + 
Luminal and abluminal 

 side of  BMECs 

Confocal microscopy, western blot 

and immunofluorescence 
[61, 67] 

Rat 

mRNA ?  Northern blotting and RT-PCR [71, 72] 

Protein + 
Luminal and abluminal 

 side of  BMECs 
Confocal microscopy and western blot [61] 

Human 

mRNA ?  RT-PCR [68, 70] 

Protein + 
Luminal and abluminal side 

of  BMECs 
Confocal microscopy and western blot [61] 

OCT3/Oct3 

Mouse mRNA +  RT-PCR [62] 

Rat mRNA ?  Northern blotting and RT-PCR [71, 72] 

Human mRNA +  RT-PCR [68-70] 

  protein +  Immunofluorescence staining [70] 
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a: BMECs, brain microvascular endothelial cells;  
b: IHC, immunohistochemistry;  
＋

: indicates transporter expression;  
－

: indicates no expression detected; 
? : controversial study results.   
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Table 1.3 Expression of OCTs/Octs in neuron and glia cells.   

 Species Localization Expression Level Techniques References 

OCT1/Oct1 

Mouse  + mRNA and protein RT-PCR and Immunohistochemistry [67] 

Rat  + mRNA In situ hybridization [78] 

Human  － mRNA Northern blot [74] 

OCT2/Oct2 

Mouse 
Neurons + Protein Immunofluorescent histochemistry [77] 

Astrocytes － Protein Immunofluorescent histochemistry [77] 

Rat Neurons + Protein Immunohistochemistry [86] 

Human Neurons + mRNA and protein 
Northern blot, in situ hybridization 

and Western blot 
[74, 76] 

OCT3/Oct3 

Mouse 
Neurons ? Protein Immunohistochemistry [80, 81] 

Glial cells + Protein Immunohistochemistry [80, 81] 

Rat 

Neurons + mRNA and protein 
In situ hybridization and 

immunohistochemistry 
[82, 85, 89] 

Glial cells ? Protein Immunohistochemistry [88, 89] 

Pinealocyte + Protein Immunohistochemistry [89] 

Human 
Neurons + Protein Immunohistochemistry [81] 

Astrocytes + mRNA and protein RT-PCR and immunohistochemistry [76, 81] 

＋
: indicates transporter expression; 

－
: indicates no expression detected.  

? : controversial study results.   
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Table 1.4 Expression of OCTs/Octs in different brain regions.     

 Species Localization Expression Level Techniques References 

OCT1/Oct1 

Mouse 
Cerebral cortex + mRNA and protein 

RT-PCR and 

immunohistochemistry 
[67] 

Brain striatum + Protein Immunohistochemistry [67] 

Rat 

Cerebellum + mRNA In situ hybridization [78] 

Corpus callosum 

 (white matter) 
+ mRNA In situ hybridization [78] 

Human  － mRNA Northern blotting [74] 

OCT2/Oct2 

Mouse 

Amygdala + Protein Immunofluorescent histochemistry [77] 

Brain striatum + Protein Immunohistochemistry [67] 

Cerebral cortex + mRNA and protein 
RT-PCR and immunofluorescent 

histochemistry 
[67] 

Dorsal raphe + Protein Immunofluorescent histochemistry [77] 

Frontal cortex + Protein Immunofluorescent histochemistry [77] 

Hippocampus + Protein Immunofluorescent histochemistry [77] 

Locus coeruleus + Protein Immunofluorescent histochemistry [77] 

Rat 

Cerebellum + mRNA In situ hybridization [78] 

The third ventricle 

layer boarding 
+ mRNA In situ hybridization [78] 

Hippocampus + mRNA In situ hybridization [78] 
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 Species Localization Expression Level Techniques References 

Human 

Amygdaloideus 

nucleus  
+ mRNA Northern blot [74] 

Caudatus nucleus  + mRNA Northern blot [74] 

Cerebral cortex + mRNA In situ hybridization [74] 

Hippocampus + mRNA and protein 
Northern blot, in situ hybridization 

and western blot 
[74] 

Subthalamicus 

nucleus 
+ mRNA Northern blot [74] 

Substantia nigra + mRNA Northern blot  [74] 

Thalamus + mRNA Northern blot [74] 

OCT3/Oct3 Mouse 

Cerebral cortex + mRNA RT-PCR [67] 

Dentate gyrus + Protein Immunohistochemistry [80] 

Dorsal raphe + Protein Immunohistochemistry [80] 

Frontal cortex + Protein Immunohistochemistry [80] 

Hippocampus + Protein Immunohistochemistry [80] 

Striatum + Protein Immunohistochemistry [81] 

Subfornical organ + Protein Immunohistochemistry [89] 

Substantia nigra + Protein Immunohistochemistry [80, 81] 

Ventral tegmental 

area 
+ Protein Immunohistochemistry [80] 
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 Species Localization Expression Level Techniques References 

Rat 

Amygdala + Protein 
Western blot and 

immunohistochemistry 
[83, 85] 

Area postrema + Protein Immunohistochemistry [83, 89] 

Brainstem + Protein Western blotting [83] 

Cerebellum + mRNA and protein 
In situ hybridization and 

immunohistochemistry 

[82, 83, 88, 

89] 

Cerebral cortex + mRNA In situ hybridization [78, 82] 

Dorsal raphe + mRNA and protein 
In situ hybridization and 

immunohistochemistry 

[78, 83, 88, 

89] 

Frontal cortex + Protein Immunohistochemistry [83, 84, 89] 

Hypothalamic 

nuclei 
+ mRNA and protein 

In situ hybridization and 

immunohistochemistry 

[78, 83, 88, 

89] 

Hippocampus + mRNA and protein 

RT-PCR, in situ hybridization, 

Western blot and 

immunohistochemistry 

[78, 82-84, 

89] 

Lateral geniculate 

nucleus 
+ mRNA In situ hybridization [78] 

Lateral septum + mRNA In situ hybridization [78] 

Locus coeruleus + Protein Immunohistochemistry [83, 89] 

Medial preoptic 

nuclei 
+ Protein Immunohistochemistry [89] 
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 Species Localization Expression Level Techniques References 

Olfactory bulbs + Protein Immunohistochemistry [83] 

Pontine nucleus + mRNA In situ hybridization [82] 

Pineal gland + Protein Immunohistochemistry [89] 

Striatum + mRNA In situ hybridization [78, 83, 84] 

Septal complex + Protein Western blot [83] 

Subcommissural 

organ 
+ Protein Immunohistochemistry [83, 89] 

Subfornical organ + mRNA and protein 
In situ hybridization and 

immunohistochemistry 
[78, 83, 89] 

Substantia nigra + Protein Immunohistochemistry [83, 89] 

Supraoptic nuclei + Protein Immunohistochemistry [83, 89] 

Thalamus + mRNA In situ hybridization [78] 

White matter + Protein Western blot  [83] 

Human 

Caudate Nucleus + mRNA RT-PCR [75] 

Cerebellum + mRNA RT-PCR [75] 

Cerebral Cortex + mRNA RT-PCR [75] 

Medulla 

Oblongata 
+ mRNA RT-PCR [75] 

Nucleus 

accumbens 
+ mRNA RT-PCR [75] 

Hippocampus + mRNA RT-PCR [75] 
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 Species Localization Expression Level Techniques References 

Substantia nigra + mRNA RT-PCR [75] 

Pons + mRNA RT-PCR [75] 

  
＋
: indicates transporter expression; 

  
－
: indicates no expression detected.  
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1.C. CURRENT EVIDENCE ON ORGANIC CATION TRANSPORTER-

MEDIATED NEUROTRANSMITTER DISPOSTION IN BRAIN  

Depressive disorders is one of the most burdensome psychiatric disorders in the 

world. People who suffer from depression showed poor worker productivity and loss of 

interest in activities or hobbies. In addition, depression carries a high risk of suicide. 

Previous studies have demonstrated that the level of neurotransmitter  5-HT is decreased 

in the patients with depressive disorders [90]. As a consequence, understanding the 

mechanism of 5-HT clearance in brain is critical for designing and developing 

antidepressant drugs. There are two distinguishable mechanisms of aminergic 

neurotransmitter clearance from the synapse: uptake-1 (high-affinity, low capacity 

reuptake) and uptake-2 (low-affinity, high capacity reuptake) [91, 92]. Uptake-1 comprised 

the serotonin transporter (SERT; SLC6A4), norepinephrine transporter (NET; SLC6A2), 

and dopamine transporter (DAT; SLC6A3) (Figure 1.2) [91, 92]. Uptake-2 is proposed to 

play a backup role in monoamine neurotransmitter clearance [14]. The uptake-1 has been 

well characterized and a variety of antidepressant drugs, known as serotonin transporter 

reuptake inhibitors (SSRIs, e.g., fluoxetine and sertraline) and serotonin and 

norepinephrine transporter reuptake inhibitors (SNRIs, e.g., venlafaxine), have been 

developed to block SERT- and/or NET-mediated neurotransmitter uptake from the 

extracellular space. Uptake-2 has been gradually gaining attention as a new therapeutic 

target for antidepressant drugs. Over the last decade, much evidence has suggested that 

uptake 2 transporters are, at least partially, OCTs, specifically OCT2/Oct2 and OCT3/Oct3 

(Figure 1.2). Compared with OCT1/Oct1, OCT2/Oct2 and OCT3/Oct3 are widely 

distributed throughout brain [80, 81, 83, 87-89]. Several neurotransmitters, including 5-

HT, NE and DA, are known substrates of OCTs [93]. in 1996, Busch et al measured the 
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transport of monoamine neurotransmitters mediated by rOct1, and it was found that rOct1 

showed low affinity (high Km) but high capacity (maximum uptake rate) for 5-HT 

compared with SERT [74]. Further studies have been conducted to explore the impact of 

OCTs in depression, using OCT inhibitors or knockout mice. In 2005, Feng and co-workers 

observed a dose-dependent increase of 5-HT when perfusing decynium-22 (D-22), an 

inhibitor of OCTs, via a dialysis probe, that correlated with increased grooming, indicating 

that Octs might be an important regulatory element in adaptive neurophysiological and 

behavioral responses [94]. Interestingly, the magnitude of extracellular 5-HT concentration 

increased (~2-6 fold increase) by OCT inhibition was comparable to another study in which 

a 4 fold increase of extracellular 5-HT concentration was observed after SERT blockade 

by fluoxetine [94, 95]. Similarly, perfusing corticosterone (OCT inhibitor) into the medial 

hypothalamus potentiated the effect of fenfluramine on blocking the uptake of extracellular 

5-HT [94]. Administration of another OCT inhibitor, normetanephrine, in mice also 

increased extracellular NE in brain and produced enhanced antidepressant-like effects [96]. 
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Figure 1.2 Expression of the examined OCTs (SLC22 family) in the neurons and glial cells 

in the CNS.  

OCT: organic cation transporter; SERT: serotonin transporter; DAT: dopamine transporter; NET: 

norepinephrine transporter; concentrations indicated are for serotonin [97, 98].    
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Several studies have been conducted to investigate Oct expression in SERT knockout mice 

[99-101]. Notably, Oct3 mRNA expression in SERT knockout mice was significantly increased in 

hippocampus, but not in the cortex, striatum, cerebellum or brainstem, while Oct1 mRNA 

expression remained unchanged [100, 101]. Oct3 protein expression, measured by 

immunohistochemistry in the hippocampus was increased by 28% in SERT knockout mice [101]. 

Indeed, antidepressant-like effects (reflected in tail suspension test) in SERT mutant mice were 

observed when D-22 was administrated [101]. Similarly, another study demonstrated that Oct3 

expression was decreased by ~30% after seven day infusion of antisense mOct3 oligonucleotides 

in the third ventricle of adult mice brain [102]. And the mice also exhibited antidepressant-like 

effect correlated with loss of Oct3 activity, including enhanced locomotor response to 

methamphetamine, decreased immobility during the forced swim test, and a potentiated 

antidepressant response to imipramine [102]. These data indicated that OCT3/Oct3 might serve as 

a compensatory mechanism in response to dysfunctional 5-HT clearance. 

In a recent study, Horton et al. investigated the effect of D-22 on 5-HT clearance in the 

synapse and associated antidepressant-like activity in mice, when coadministered with 

fluvoxamine [103]. Clearly, D-22 coadministered with fluvoxamine increased the concentration 

of 5-HT in brain and caused increased antidepressant-like activity compared to those using 

fluvoxamine alone, indicating that Oct3 might be a novel target for antidepressant drugs [103]. 

The role of Oct2 in 5-HT clearance was investigated in Oct2 knockout mice [77]. A marked 

reduction in brain concentrations of NE and 5-HT, and in ex vivo uptake of both these 

neurotransmitters, were observed in Oct2 knockout mice in the presence of venlafaxine (an SNRI) 

[77]. As a consequence, markedly increased immobility time was observed in both forced swim 

and tail suspension tests, indicating an increased depressive-like phenotype [77]. In addition, 
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compared with wild-type mice, Oct2 knockout mice showed increased sensitivity to the acute 

administration of antidepressants [77]. Collectively, these data indicated an active role of 

OCT2/Oct2 in mediating NE and 5-HT clearance in brain. Thus, both in vitro and in vivo studies 

indicated that OCTs might be an important determinant of CNS monoamine neurotransmitter 

balance, and therefore play an important role in mood-related behaviors, elevating their potential 

as novel pharmacological targets for mood disorder therapy.   

1.D ORGANIC CATION AND ANION TRANSPORTER-MEDIATED DRUG 

INTERACTION 

Drug transporters are widely involved in drug absorption, distribution and elimination 

[104]. OCT1 has been recognized as a major transporter dominating the hepatic uptake of 

metformin, and genetic variation in OCT1 showed significant impact on 

metformin pharmacokinetics [105]. Several OATs, including OAT1, OAT3 and OAT4, are 

expressed in renal proximal tubular cells and manipulate active renal secretion and reabsorption 

[2]. As drug transporters influence the pharmacokinetics of a broad variety of therapeutics, it is 

expected that drug pharmacokinetic properties (e.g. AUC, clearance, and tissue distribution) and 

pharmacodynamic response might be altered due to concomitant administration of drugs that are 

substrates or inhibitors of the same transporter during situations of polypharmacy. This 

phenomenon is called drug-drug interactions (DDI), in which patients may experience unexpected 

side effects, such as loss of efficacy or toxicity. For instance, a clinical study demonstrated that 

systemic and peak exposure of  rosuvastatin was significantly increased in transplant recipients 

using cyclosporine, with AUC and Cmax increased by ~7 fold and ~11 fold compared with those 

using rosuvastatin [106]. Such DDIs might be caused by cyclosporine inhibition of OATP1B1-

mediated rosuvastatin hepatic uptake, and increased systemic exposure of rosvustatin showed high 



www.manaraa.com

 

 

26 
 

risk of rosvustatin-related toxicity. Therefore, the United States Food and Drug Administration 

and the European Medicines Agency has issued guidance documents regarding circumstances 

under which drug interactions with specified transporters need to be investigated 

(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/

UCM292362.pdf and http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/ 

document_detail.jsp?webContentId=WC500090112&murl=menus/document_library/document_

library.jsp&mid=WC0b01ac058009a3dc&jsenabled=true) for drug safety and efficacy. 

As mentioned in section 1.B, OCTs and OATs are widely expressed in many organs and 

in vivo mediate the absorption, distribution, and disposition of a broad variety of charged 

endogenous and exogenous organic substances [2, 3, 6]. Currently, hundreds of important clinical 

therapeutics have been identified as substrates and/or inhibitors of OCTs and OATs[16, 20]. For 

example, methotrexate, a commonly used drug for the treatment of cancer and rheumatic diseases, 

was identified as an OAT3/Oat3 substrate [107]. In Oat3 knockout mice, increase plasma 

concentration of methotrexate and methotrexate-to-inulin clearance were observed as compared to 

those in wildtype mice, indicating a role of Oat3 in the renal elimination of methotrexate [107]. 

Some fluoroquinolone antimicrobials, such as ciprofloxacin, gatifloxacin, and norfloxacin, 

showed significant inhibition on hOCT1, indicating that hOCT1 may play a role in the hepatic and 

renal disposition of these antimicrobial agents [108]. The antiviral lamivudine was identified as a 

substrate of hOCT2 [109]. As lamivudine is cleared predominantly by the kidney via renal tubular 

secretion, concomitant administration of drugs that inhibit hOCT2 could decrease its renal 

clearance. The antiplatelet drug clopidogrel and its major metabolite clopidogrel carboxylate 

showed potent inhibition of hOCT1 (IC50 values: 0.307–14.0 μM) [110]. Ethambutol, an anti-

tuberculosis drug, showed significant inhibitory effect on hOCT1, hOCT2, and hOCT3 [111]. 

http://cts.vresp.com/c/?OptiviaBiotechnology/ef5d02069c/a92e19a8cb/a319bc5b59
http://cts.vresp.com/c/?OptiviaBiotechnology/ef5d02069c/a92e19a8cb/a319bc5b59
http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500090112&murl=menus/document_library/document_library.jsp&mid=WC0b01ac058009a3dc&jsenabled=true
http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500090112&murl=menus/document_library/document_library.jsp&mid=WC0b01ac058009a3dc&jsenabled=true
http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500090112&murl=menus/document_library/document_library.jsp&mid=WC0b01ac058009a3dc&jsenabled=true
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Considering the clinically unbound plasma concentration of ethambutol, tuberculosis patients with 

coexisting HIV or diabetes may experience DDIs with coadministration of ethambutol and drugs 

known to be hOCT1/hOCT3 substrates (e.g. lamivudine or metformin) [111]. Interestingly, some 

research groups have been starting to investigate the interaction of natural products and OCTs. Pan 

et al. reported that the alkaloids matrine and oxymatrine, which are widely used in China as herbal 

medicine for the treatment of cancer, viral, and cardiac diseases, showed inhibitory effects on 

hOCTs [112]. Additionally, berberine, known as an active constituent of many medicinal herbal 

extracts was identified as a potent inhibitor of hOCT2 and hOCT3, with IC50 values in the low 

micromolar range (0.1-1 µM) [113]. Such increased understanding of the vital roles SLC22 

transporters play in the absorption, distribution, elimination and reabsorption of drugs and 

endogenous compounds will serve to facilitate the development of drugs with increased specificity, 

safety and favorable pharmacokinetic profiles, as well as broaden our understanding of their roles 

in various pathophysiologies.   
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CHAPTER 2 

 

 

RESEARCH OBJECTIVES AND SPECIFIC AIMS 

 

 

 

 

2.A RESEARCH OBJECTIVES   

2.A.1 Many components in clinical therapeutics, herbal products, and drugs of abuse are charged 

at physiological pH and therefore represent unidentified substrates/inhibitors of organic cation 

(OCTs) or anion transporters (OATs).       

2.A.2 OCTs/OATs are sites of drug-drug interaction (DDI) during situations of polypharmacy and 

the DDI index, estimated based on the affinity (Ki and IC50) and clinical unbound plasma 

concentrations, can be used to predict clinically relevant DDIs potentially mediated by compounds 

confirmed to interact with SLC22 transporters in SA1.   

2.A.3. OCTs, as an important component of the low-affinity, high capacity clearance pathway 

(uptake-2) for biogenic monoamine neurotransmitters, represent novel targets for psychostimulant 

drugs of abuse and antidepressants.  

2.A.4. Construction of a hOCT3 homology model based upon the solved structure of the 

Piriformospora indica phosphate transporter (PiPT, PDB id 4J05) will allow identification of key 

transporter structural features required for substrate/inhibitor interactions. 
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2.B SPECIFIC AIMS TO ADDRESS THE ABOVE HYPOTHESES  

SPECIFIC AIM 1:  

To quantify the inhibitory effects on OCTs/Octs (hOCT1-3 and mOct1-3) or OATs (hOAT1, 

hOAT3 and hOAT4) of 5 constituents from therapeutic agents/herbal products, 5 drugs of abuse 

and 13 novel synthesized compounds having been identified as possessing physicochemical 

properties similar to known SLC22 family substrates and inhibitors.  

SPECIFIC AIM 2:   

To quantify IC50 or Ki values for lead compounds identified in SA1 as producing significant OCT 

or OAT inhibition based upon predefined conditions and to use this information to calculate DDI 

indices to determine the potential for clinically relevant DDIs mediated by OCTs/OATs based on 

“Guidance for Industry: Drug Interaction Studies” issued by the FDA. 

SPECIFIC AIM 3:   

To conduct in vivo dose response studies in mice to quantify (i.e., ED50 assessment) the 

antidepressant-like effects of lead quinazoline and/or guanidine compounds identified in SA1 and 

SA2 as having significant interaction potential on SLC22 transporters. 

SPECIFIC AIM 4:  

To construct a 3-D homology model for hOCT3 and dock known substrates and lead quinazoline 

and/or guanidine compounds identified in SA1 and SA2 in order to identify key amino acid 

residues that might be involved in interaction between hOCT3 and small molecules (done in 

collaboration with Dr. Dukat’s laboratory and Kavita Iyer). To determine the mode of inhibition 

of docked compounds to support modeling and docking study conclusions.  
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CHAPTER 3  

 

 

THE ANTHRAQUINONE DRUG RHEIN POTENTLY INTERFERES WITH ORGANIC 

ANION TRANSPORTER-MEDIATED RENAL ELIMINATION 

 

 

Drawn from manuscript published in Biochemical Pharmacology. 2013, 86: 991–996. 

 

 

 

 

3.A INTRODUCTION 

Great insight has been gained from in vitro and in vivo studies on drug transporters 

regarding their role in physiology and biopharmaceutics [104]. These drug transporters are 

expressed in barrier organs and involved in the interchange (e.g. uptake or removal) of endogenous 

and exogenous substances between cells and biofluids. Among these transporters, organic anion 

transporters (OATs), which belong to the SLC22 family, interact with anionic compounds [2, 6]. 

Three human (h) OAT paralogs, hOAT1, hOAT3, and hOAT4 have been identified as 

determinants for tubular secretion and reabsorption [2, 6]. Human OAT1 and hOAT3, 

immunolocalized to the basolateral side of proximal tubules, mediate cellular uptake of negatively 

charged organic molecules from the blood [2, 6]. Human OAT4, which is expressed on the apical 

side of proximal tubules, appears to mediate reabsorption of organic anions from tubular fluid [2, 
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6]. Such OAT-mediated organic solute flux is vital for maintaining systemic homeostasis and 

normal renal elimination. 

Numerous first-line therapeutics (e.g., antibiotics, ACE inhibitors and NSAIDs) and 

components of herbal medicines have been identified as substrates and/or inhibitors for OATs [2, 

6]. These findings demonstrate the impact of OATs on the pharmacokinetic properties of these 

drugs and provide efficacy and safety information for their clinical application. Interestingly, Oat3 

function has been linked to the regulation of blood pressure in mice. Oat3 knockout mice, and 

wild-type mice treated with potent Oat3 inhibitors, exhibited significantly reduced blood pressure 

compared to untreated wild-type animals [114]. For diabetic patients, blood pressure is a major 

determinant of the risk of developing nephropathy [115]. Thus, impairment of OAT function 

(either through genetics or pharmacology) may influence normal physiological status and result in 

unexpected drug-drug interactions (DDIs). 

The anthraquinone compound rhein is a major component of the medicinal herb Rheum sp., 

which is widely used for its antidotal, anti-inflammatory, antipyretic and laxative properties in 

Asian countries including China, Korea, and Japan. This medicinal herb is also used to treat 

diabetic nephropathy [116]. Further, rhein was identified as a major metabolite of diacerein, a 

prodrug used in the treatment of osteoarthritis [117]. In vivo, diacerein is completely converted to 

rhein before entering the systemic circulation [118, 119]. Rhein is highly protein bound in human 

plasma (99%) and, after oral administration, the majority of rhein is eliminated in urine as 

glucuronide conjugates (60%), followed by unchanged form (20%) and sulfate conjugates (20%) 

[118]. In clinical practice diacerein is utilized in polypharmacy therapies, e.g., a fixed dose of 

diacerein (50 mg) and aceclofenac (100 mg) has been approved in India to treat osteoarthritis [120]. 

Recently, a phase II clinical trial was initiated in Thailand to investigate the safety and efficacy of 



www.manaraa.com

 

 

32 
 

the combined therapy of diacerein and methotrexate to treat early rheumatoid arthritis 

(http://clinicaltrials.gov/ct2/show/NCT01264211). As methotrexate and a number of NSAIDs are 

known inhibitors and substrates of OATs [2, 6], the interaction of rhein with OAT family members 

needs to be investigated in order to meaningfully assess the potential for transporter-mediated 

adverse events. 

Based on its chemical structure, rhein, which bears a carboxylic group, has the potential to 

be a substrate and/or inhibitor for OATs. Because OATs have broad substrate specificity, rhein 

may cause DDIs with co-administered therapeutics that are OAT substrates. This information may 

also be useful to elucidate the beneficial effects of Rheum sp. on diabetic nephropathy. In the 

present study, inhibition of hOAT1-mediated p-aminohippuric acid (PAH) transport and hOAT3- 

and hOAT4-mediated estrone sulfate (ES) transport by rhein was explored using stably transfected 

cell lines. Further kinetic studies were conducted to estimate the half maximal inhibitory 

concentration (IC50) and inhibitory constant (Ki). In order to investigate potential species 

differences IC50 and Ki estimates also were determined in murine (m) Oat1 and mOat3 expressing 

cells. The results showed that rhein was a potent inhibitor for hOAT1, hOAT3, and hOAT4. The 

IC50 values for rhein on hOAT1 and hOAT3 were estimated as 77.1 ± 5.5 nM and 8.4 ± 2.5 nM, 

respectively. However, rhein failed to produce > 50% inhibition on hOAT4 transport activity at 

100 µM, indicating that the IC50 value on hOAT4 was higher than 100 µM. Comparison of 

estimated IC50 values with clinical unbound plasma concentrations indicated the potential for 

clinically relevant DDIs on hOAT1 and hOAT3 in the kidney. In addition, marked species 

differences appeared to exist in inhibitory potency, with hOAT1 and hOAT3 exhibiting 3- and 28-

fold higher affinity with rhein as compared to their murine orthologs, respectively. Together, these 

findings suggested that rhein could interfere with hOAT1- and hOAT3-mediated renal elimination 

http://clinicaltrials.gov/ct2/show/NCT01264211
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in vivo, leading to unintended changes in pharmacokinetics, pharmacodynamics, toxicity and the 

therapeutic effects of Rheum sp.  

 

3.B Materials and Methods 

3.B.1 Chemicals  

Rhein (≥ 98% purity) was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, 

CA). Tritiated p-aminohippuric acid ([3H]PAH) and estrone sulfate ([3H]ES) were purchased from 

PerkinElmer Life and Analytical Sciences (Waltham, MA) and unlabeled PAH, ES, and 

probenecid were purchased from Sigma-Aldrich (St. Louis, MO). 

3.B.2 Tissue culture  

Derivation of stably transfected Chinese hamster ovary (CHO) cells expressing hOAT1 

(CHO-hOAT1), hOAT4 (CHO-hOAT4), mOat1 (CHO-mOat1), and mOat3 (CHO-mOat3) as well 

as stably transfected human embryonic kidney 293 (HEK) cells expressing hOAT3 (HEK-hOAT3), 

and their corresponding empty vector transfected background control cell lines, has been described 

previously [107, 121, 122]. All cells lines were maintained at 37C with 5% CO2 in medium 

containing 10% FBS and 1% Pen/Strep. CHO-hOAT1 cells were cultured in phenol red-free RPMI 

1640 media (Gibco-Invitrogen, Grand Island, NY) containing 1 mg/mL G418. CHO-hOAT4 cells 

were cultured in EMEM Alpha Modification media (Sigma-Aldrich (St. Louis, MO) containing 

0.5 mg/mL G418. CHO-mOat1 and CHO-mOat3 cells were cultured in DMEM F-12 media 

(Mediatech, Inc., Herndon, VA) containing 125 μg/mL hygromycin B. HEK cell lines were 

cultured in DMEM high glucose media (Mediatech, Inc., Herndon, VA) containing 125 µg/ml 

hygromycin B. 
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3.B.3 Cellular uptake assay 

The procedure for the cellular uptake assay was adapted from that previously published 

[123]. Two days before cellular uptake experiment, 2 × 105 cells/well were seeded in 24-well tissue 

culture plates and grown in the absence of antibiotics. On the day of the experiment, cells were 

equilibrated in transport buffer at room temperature (22-25C) for 10 min [500 µL of Hanks’ 

balanced salt solution containing 10 mM HEPES, pH 7.4]. After equilibration, this solution was 

replaced with 500 µL of fresh transport buffer containing 1 µM [3H]PAH (0.5 µCi/mL) or [3H]ES 

(0.25 µCi/mL) with or without inhibitors. At the end of incubation, cells were quickly rinsed three 

times with ice-cold transport buffer. Then cells were lysed with 1N NaOH, neutralized with 1N 

HCl, and analyzed via liquid scintillation counting. The intracellular accumulation of tritiated 

substrates was reported as picomoles of substrate per milligram total protein. All uptake data were 

corrected for background accumulation in corresponding empty vector transfected control cells. 

Substrate concentrations and accumulation times used for kinetic analysis of hOAT1, hOAT3, 

mOat1, and mOat3 were determined previously [107, 121, 123, 124]. Kinetic calculations were 

performed using GraphPad Prism Software version 5.0 (GraphPad Software Inc., San Diego, CA). 

The half maximal inhibitory concentrations (IC50) and inhibitory constants (Ki) were calculated 

using nonlinear regression. Results were confirmed by repeating all experiments at least three 

times with triplicate wells for each data point in every experiment. 

3.B.4 Statistics 

Data are reported as mean  SD or mean  SEM as indicated. Raw cell line accumulation 

data are reported as mean  SEM. Statistical differences were assessed using one-way ANOVA 

followed by post-hoc analysis with Dunnett’s t-test (α = 0.05) except for statistical differences 
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between murine and human transporter Ki values which were assessed by two-tailed Student’s 

unpaired t-test.  

3.C Results 

3.C.1 Inhibitory effects of rhein on hOAT1-, hOAT3-, and hOAT4-mediated substrate uptake  

Markedly increased cellular accumulation of PAH (7.9  0.1 pmol mg protein-1 10 min-1) 

was observed in CHO-hOAT1 cells compared to that in the empty vector transfected background 

control cells (0.3  0.1 pmol mg protein-1 10 min-1), and this hOAT1-mediated cellular uptake was 

inhibited by probenecid at 1 mM (Figure 3.1A). Rhein was assessed for inhibitory effects on CHO-

hOAT1 transport activity at 100 µM (Figure 3.1A). Under this condition, rhein completely blocked 

PAH accumulation (> 99% inhibition) in CHO-hOAT1 cells. Dose-response studies, applying 

increasing concentrations of rhein (10-9 to 10-5 M), were performed to determine the IC50 value 

(Figure 3.1B and Table 3.1). The IC50 value for rhein on hOAT1 was estimated as 77.1 ± 5.5 nM. 

Previous studies demonstrated that the mode of inhibition of most identified OAT inhibitors was 

competitive [107, 124-128]. Thus, assuming competitive inhibition, the inhibition constant (Ki) 

was estimated as 71.5 ± 5.2 nM (Table 3.1).  

CHO-hOAT3 cells exhibited significantly increased accumulation of ES (6.5  0.2 pmol 

mg protein-1 10 min-1) compared to that in the empty vector transfected background control cells 

(2.2  0.3 pmol mg protein-1 10 min-1). Similar to probenecid (1 mM), rhein showed virtually 

complete inhibition of hOAT3-mediated ES uptake at 100 µM (Figure 3.2A). Accordingly, dose-

response studies (10-9 to 10-4 M) were conducted to estimate affinity of rhein for hOAT3. Rhein 

showed much higher affinity for hOAT3 than for hOAT1, with an IC50 value of 8.4 ± 2.5 nM 
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(Figure 3.2B and Table 3.1). Assuming competitive inhibition, the Ki was estimated as 7.7 ± 2.4 

nM (Table 3.1). 

 

 

 

Figure 3.1 Inhibition of hOAT1 by rhein. 
 

A: Inhibition of hOAT1-mediated PAH (1 µM) uptake by rhein (100 µM) was assessed at 10 

min. Values are mean ± SD of triplicate samples. ***denotes p < 0.001 as determined by one-

way ANOVA followed by Dunnett’s t-test. B: Dose-response curve for rhein on hOAT1. One 

minute uptake of PAH (1 µM) was measured in CHO-hOAT1 cells in the presence of increasing 

concentrations of rhein (10-9 to 10-5 M). The IC50 was estimated using non-linear regression and 

the “log(inhibitor) vs. response” model (GraphPad Prism). All data were corrected for non-

specific background measured in control cells. 
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Figure 3.2 Inhibition of hOAT3 by rhein.  
 

A: Inhibition of hOAT3-mediated ES (1 µM) uptake by rhein (100 µM) was assessed at 10 min. 

Values are mean ± SD of triplicate samples. ***denotes p < 0.001 as determined by one-way 

ANOVA followed by Dunnett’s t-test. B: Dose-response curve for rhein on hOAT3. One minute 

uptake of ES (1 µM) was measured in HEK-hOAT3 cells in the presence of increasing 

concentrations of rhein (10-9 to 10-4 M). The IC50 was estimated using non-linear regression and 

the “log(inhibitor) vs. response” model (GraphPad Prism). All data were corrected for non-

specific background measured in control cells. 
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Stably transfected hOAT4-expressing (CHO-hOAT4) cells showed higher accumulation 

of ES (~24 fold) relative to empty vector transfected background control cells (26.9  3.5 vs. 1.1 

 0.1 pmol/mg protein/10 min, respectively; Figure 3.3). This active transport underwent self-

inhibition (> 99% inhibition) by ES (1 mM). Rhein, however, showed modest inhibition (~29%) 

on hOAT4 transport activity at 100 µM. As this indicated that the IC50 value of rhein on hOAT4 

should be higher than 100 µM, no further kinetic studies were performed. 

 

 

 

 

 

 

Figure 3.3 Inhibition of hOAT4 by rhein.  
 

A: Inhibition of hOAT4-mediated ES (1 µM) uptake by rhein (100 µM) was assessed at 10 min. 

Values are mean ± SD of triplicate samples. **denotes p < 0.01 and ***denotes p < 0.001 as 

determined by one-way ANOVA followed by Dunnett’s t-test. 
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3.C.2 Inhibitory effects of rhein on mOat1- and mOat3-mediated substrate uptake  

CHO-mOat1 and CHO-mOat3 cells showed > 10-fold increased substrate uptake compared 

to that in the empty vector transfected background control cells. The intracellular accumulation of 

PAH was measured as 8.0  0.3 pmol mg protein-1 10 min-1 and 0.8  0.2 pmol mg protein-1 10 

min-1 in CHO-mOat1 and background control cells, respectively. Accumulation of ES was 

measured as 171  12 pmol mg protein-1 10 min-1 and 5.7  1.5 pmol mg protein-1 10 min-1 in CHO-

mOat3 and background control cells, respectively. As shown in Figures 3.4A and 3.5A, probenecid 

(1 mM) achieved complete inhibition (> 99% inhibition) of mOat1- and mOat3-mediated substrate 

uptake. At 100 µM, rhein exhibited potent inhibition, completely blocking mOat1 and mOat3 

transport activity (Figures 3.4A and 3.5A). Further dose-response studies (10-8 to 5×10-4 M) were 

performed to determine the IC50 values in order to evaluate potential species differences between 

human and murine OATs (Figures 3.4B and 3.5B and Table 3.1). The IC50 values were estimated 

as 215 ± 29 nM and 235 ± 74 nM for mOat1 and mOat3, respectively. Assuming that rhein was a 

competitive inhibitor, Ki values were estimated as 198 ± 26 nM and 216 ± 68 nM, respectively 

(Table 3.1). 
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Figure 3.4 Inhibition of mOat1 by rhein.  
 

A: Inhibition of mOat1-mediated PAH (1 µM) uptake by rhein (100 µM) was assessed at 10 min. 

Values are mean ± SD of triplicate samples. ***denotes p < 0.001 as determined by one-way 

ANOVA followed by Dunnett’s t-test. B: Dose-response curve for rhein on mOat1. One minute 

uptake of PAH (1 µM) was measured in CHO-mOat1 cells in the presence of increasing 

concentrations of rhein (10-8 to 5×10-4 M). The IC50 was estimated using non-linear regression 

and the “log(inhibitor) vs. response” model (GraphPad Prism). All data were corrected for non-

specific background measured in control cells. 
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Figure 3.5 Inhibition of mOat3 by rhein.  
 

A: Inhibition of mOat3-mediated ES (1 µM) uptake by rhein (100 µM) was assessed at 10 min. 

Values are mean ± SD of triplicate samples. ***denotes p < 0.001 as determined by one-way 

ANOVA followed by Dunnett’s t-test. B: Dose-response curve for rhein on mOat3. One minute 

uptake of ES (1 µM) was measured in CHO-mOat3 cells in the presence of increasing 

concentrations of rhein (10-8 to 5×10-4 M). The IC50 was estimated using non-linear regression 

and the “log(inhibitor) vs. response” model (GraphPad Prism). All data were corrected for non-

specific background measured in control cells. 
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Table 3.1 Estimated kinetic constants (IC50, Ki) and DDI indices for rhein on OATs. 

Transporter 
IC50 

(nM) 

Ki 

(nM)a 

Unbound 

 Cmax (nM)b 
DDI index 

Ki ratio 

(murine/human) 

hOAT1 77.1 ± 5.5 71.5 ± 5.2 67-387 5.0  

hOAT3 8.4 ± 2.5 7.7 ± 2.4 67-387 46  

hOAT4 > 100, 000 > 100, 000    

mOat1 215 ± 29 198 ± 26   2.8** 

mOat3 235 ± 74 216 ± 68   28** 

Values are reported as mean ± SEM.  
a Ki values were estimated assuming competitive inhibition based on literature.   
b Clinical Cmax values were reported from literature.     

**denotes significant difference between murine and human Ki values p < 0.01 as determined by 

two-tailed Student’s unpaired t-test. 

 

3.D Discussion 

With increasing clinical evidence supporting drug transporter-mediated DDIs, it is 

necessary to identify potential substrates and inhibitors from both existing and new candidate drugs 

[104]. Hundreds of endogenous and exogenous compounds have been identified as substrates 

and/or inhibitors for OATs, including clinically important therapeutics such as antibiotics 

(benzylpenicillin, cephaloridine, cefdinir and cefotiam), antivirals (adefovir, cidofovir, and 

ganciclovir), anticancer agents (methotrexate), cholesterol-lowering agents (pravastatin), and 

angiotensin-converting enzyme inhibitors (quinapril) [2, 6]. Such broad substrate specificity 

markedly increases the risk of DDIs, especially during combination therapies. In addition, recent 

investigations demonstrated potential interaction between OATs and natural products, including 

phenolic acids, flavonoids, and other anionic compounds [123, 124]. While these natural products 

are major components of herbal medicines and nutritional supplements, information on the proper 

use and safety of these compounds is limited compared to “traditional” western drugs. Rhein is 
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both a major metabolite of the prodrug diacerein and a major constituent of the medicinal herb 

Rheum sp.  

In the present study, the inhibitory effects of rhein on three human OATs (hOAT1, hOAT3, 

and hOAT4) and two murine OAT orthologs (mOat1 and mOat3) were assessed. Rhein showed 

significant inhibition on substrate uptake mediated by hOAT1, hOAT3 and hOAT4 at 100 µM. 

Kinetic studies demonstrated that the estimated IC50 values for hOAT1 and hOAT3 were in the 

low nanomolar range (IC50 = 77.1 ± 5.5 nM and 8.4 ± 2.5 nM for hOAT1 and hOAT3, respectively), 

while hOAT4 showed poor affinity with rhein (IC50 > 100 µM). The estimated IC50 values for 

mOat1 and mOat3 were somewhat higher (IC50 = 215 ± 29 nM and 235 ± 74 nM for mOat1 and 

mOat3, respectively), indicating that human OATs exhibited higher affinity for rhein compared to 

their murine orthologs. In addition, rhein exhibited ~9-fold higher affinity (lower Ki value) for 

hOAT3 than for hOAT1, while no significant difference between mOat1 and mOat3 was observed 

(Table 3.1). 

For most identified OAT inhibitors, Ki values are in the micromolar range, with some 

compounds exhibiting much poorer affinity (Ki values > 1 mM) [2, 6]. Very few compounds have 

shown extremely high affinity (nM) for OATs, e.g., some cephalosporin antibiotics, ochratoxin A, 

prostaglandin E2 and prostaglandin F2α. In this study, the estimated IC50 and Ki values for hOAT1 

and hOAT3 were less than 100 nM, making rhein one of the most potent inhibitors yet identified 

for hOAT1 and hOAT3. Such high affinity indicates that rhein has the potential to interfere with 

hOAT1- and hOAT3-mediated renal elimination of endogenous, as well as xenobiotic, substances. 

The Food and Drug Administration guidance for industry, “Drug Interaction Studies — Study 

Design, Data Analysis, Implications for Dosing, and Labeling Recommendations” recommends 

that DDI potency be estimated using the DDI index, calculated as the [unbound] Cmax/Ki (or IC50) 
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ratio [129]. A DDI index value greater than 0.1 indicates that the test compound has the potential 

to perpetrate in vivo DDIs. Based on clinical reports, the range of Cmax of rhein was from 8.8 to 

14.8 µM after administration of a typical dose of diacerein (50 mg) [119, 120, 130], and the Cmax 

of rhein in patients administered Rheum sp. ranged from 6.7 to 38.7 µM [131-133], indicating 

similar peak exposure level. Although most rhein molecules in human plasma exist as the bound 

form (99%), the unbound Cmax (67-387 nM) of rhein is close to or higher than the IC50 values 

determined in this study. The maximum DDI index was calculated as 5.0 and 46 for hOAT1 and 

hOAT3, respectively. These results indicated significant inhibition potential on hOAT1 (83%) and 

hOAT3 (98%) transport activity, resulting in reduced hOAT1- and hOAT3-mediated renal tubular 

secretion of co-administered therapeutics that are OAT substrates. As mentioned earlier, diacerein 

is combined with NSAIDs or methotrexate in clinical applications for the treatment of 

osteoarthritis or rheumatoid arthritis. However, for herbal medicines containing Rheum sp. (rhein) 

there is no official warning regarding potential herb-drug interactions. Therefore, further in vivo 

pharmacokinetic studies are necessary to explore potential DDIs involving rhein.  

Animal models are commonly employed to demonstrate DDI potential in vivo. However, 

if notable species differences between the animal model and humans appear to exist, the utility of 

results from animal studies may be lacking. Currently, limited work has been done to demonstrate 

species differences in inhibitory potency on OATs. Some compounds (e.g., diclofenac and 

sulindac) showed preferential affinity with rodent OATs compared to human orthologs, while 

other substances (e.g., adefovir, cefoperazone, cephalothin, cidofovir and methotrexate) exhibited 

lower Ki or Km values for human OATs [6]. Previous work showed that hOAT1 exhibited 3.4-16 

fold higher affinity for three Danshen (a traditional Chinese herbal medicine) components, 

rosmarinic acid, salvianolic acid B and tanshinol, as compared to mOat1, and five Danshen 
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compounds (lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B and 

tanshinol) exhibited much higher affinity (by 1-2 orders of magnitude) for hOAT3 over mOat3 

[124]. In the current study, rhein also exhibited higher affinity for hOAT1 and hOAT3, with 3- 

and 28-fold lower Ki values than those for mOat1 and mOat3. These differences raised the issue 

that DDI potency observed in mice at clinically relevant doses may underestimate the in vivo DDI 

potential for humans. Thus, the dose would need to be adjusted in order to balance the discrepancy 

in affinities between species. This highlights the significance of in vitro work to delineate species 

differences in affinity with OATs before using animal models to conduct pharmacokinetic studies 

and extrapolating the results to humans. Other animal models (e.g., dog or monkey) should be 

investigated more thoroughly with respect to OATs to determine if they represent a more 

appropriate animal model. 

Progression of diabetes mellitus sometimes results in diabetic nephropathy and renal failure 

[115]. Although the mechanism underlying the therapeutic effect of antihypertensive drugs is not 

well understood, clinically they are used to slow the onset of diabetic nephropathy and lower blood 

pressure [115]. In 2008, Vallon et al. reported that reduced blood pressure was observed in Oat3 

knockout mice and wild-type mice treated with potent Oat3 inhibitors [114]. These data suggested 

that hOAT3 might represent a novel target to ameliorate diabetic nephropathy. Similarly, the 

Danshen component, lithospermic acid, was demonstrated to significantly reduce blood pressure 

and to exert nephroprotective effects in diabetic rats [134, 135]. Though other mechanisms for 

attenuated diabetic nephropathy may exist, the potential contribution of reduction in blood pressure 

via inhibition of OAT3/Oat3 function by Danshen components such as lithospermic acid can not 

be ruled out [124]. A clinical investigation demonstrated that rhei rhizoma (the dried root and 

rhizome of Rheum sp.) also exhibited beneficial effects for diabetic nephropathy [116]. Thus, it is 
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possible that rhein might exert positive effects on diabetic nephropathy through inhibition of 

hOAT3 transport activity and subsequent downregulation of blood pressure. 

In summary, the anthraquinone drug rhein showed marked inhibition on hOAT1- and 

hOAT3-mediated substrate uptake at clinically relevant concentrations. Notable species 

differences were observed between human and murine OAT orthologs, with human OATs 

exhibiting preferential affinity. The DDI indices for rhein on hOAT1 and hOAT3 indicated a 

strong potential for OAT-mediated DDIs in patients involved in combination therapy of rhein and 

drugs that are known hOAT1 and/or hOAT3 substrates. Moreover, the nanomolar affinities of 

rhein for hOAT1 and hOAT3 mirror known OAT affinities for endogenous compounds, e.g., 

hormones, raising the possibility of significant drug-endogenous molecule interactions as well. 

Such a mechanism might explain the effects of rhein and lithospermic acid on blood pressure, i.e., 

via inhibiting the uptake of an endogenous hOAT3 substrate involved in regulation of blood 

pressure.  
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CHAPTER 4  

 

INTERACTION OF ETHAMBUTOL WITH HUMAN ORGANIC CATION 

TRANSPORTERS (SLC22 FAMILY) INDICATES POTENTIAL FOR DRUG-DRUG 

INTERACTIONS DURING ANTITUBERCULOSIS THERAPY  

 

Drawn from manuscript published in Antimicrob. Agents Chemother. 2013. 57(10): 5053-5059. 

 

 

 

 

4.A INTRODUCTION  

Ethambutol dihydrochloride (EMB) (Figure 4.1) is a potent antimycobacterial agent 

employed in the treatment of tuberculosis (TB) and Mycobacterium avium complex infections. 

The main pharmacological effect of EMB is to inhibit arabinosyl transferase, preventing the 

synthesis of arabinogalactan, which is a vital component of the mycobacterial cell wall. EMB, 

pyrazinamide, isoniazid, and rifampin comprise the four first-line antituberculosis drugs 

recommended by the World Health Organization (WHO) [136]. EMB is used in the treatment of 

multidrug-resistant tuberculosis to prevent the emergence of isoniazid- or rifampin-resistant 

mycobacteria [137]. In clinical practice, EMB use is associated with many adverse effects, 

including optic neuritis (reported in 1% to 5% of patients) [138] and reduced renal clearance of 

urate (reported in about 66% of patients) [139], the incidence of which is higher when EMB is 

concomitantly administered with pyrazinamide [140]. The in vivo pharmacokinetic properties of 

EMB have been well defined [141-143]. In humans, EMB showed high bioavailability (80%) and 

low plasma protein binding (20 to 30%) [144]. A peak serum concentration (Cmax) of 4.5g/ml was 
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reported after oral dosing of 25 mg/kg [141]. Only a small portion of EMB (8% to 15%) is 

metabolized in the liver to form the final dicarboxylic metabolite, 2,2’-(ethylenediimino)dibutyric 

acid (EDA) (Figure 4.1) [145]. Renal elimination is the major clearance mechanism for EMB, with 

70 to 84% of an intravenous dose being excreted in the urine as the unchanged parent compound 

[144]. The renal clearance rate (417 ml/min) indicates that active net tubular secretion, as well as 

glomerular filtration (120 ml/min), is involved [141]. While EMB has been identified as a substrate 

of P-glycoprotein [146], based upon their chemical structures (Figure 4.1) and physicochemical 

properties, EMB and EDA have the potential to be a substrate and/or inhibitor of OCTs and/or 

OATs. 

The organic cation/anion/zwitterion transporters belong to the solute carrier 22 (SLC22) 

family and in vivo mediate the absorption, distribution, and elimination of a broad variety of 

charged endogenous and exogenous organic substances [2, 3, 6]. OATs and OCTs are widely 

expressed in many barrier organs, such as the intestine, kidney, liver, and brain [2, 3, 6]. In the 

intestine (Figure 4.2), human OCT1 (hOCT1) (SLC22A1) is expressed in the basolateral 

membrane and hOCT3 (SLC22A3) is targeted to the brush border membrane of enterocytes, where 

they mediate the cellular entry of cationic compounds [3]. hOCT1 and hOCT3 are both expressed 

in the sinusoidal membrane (blood side) of hepatocytes (Figure 4.2) and represent the first step in 

the hepatic excretion of many substances [3, 147]. In the kidney (Figure 4.2), hOCT2 (SLC22A2), 

hOCT3, hOAT1 (SLC22A6), and hOAT3 (SLC22A8) are each expressed on the basolateral sides 

of proximal tubule cells and extract drugs from the blood. hOCT1 mRNA has been detected; 

however, the protein has not been immunolocalized [2, 3]. Hundreds of important clinical 

therapeutics are known substrates and/or inhibitors of OATs and OCTs, such as chemotherapeutics 

(e.g., cisplatin and paclitaxel), analgesics (e.g., morphine), cholesterol-lowering drugs (e.g., 
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atorvastatin and pravastatin), antivirals (e.g., cidofovir and lamivudine), and antidiabetic agents 

(e.g., metformin) [2, 3, 6].  

Recently, it was reported that TB infection is closely linked to both human 

immunodeficiency virus (HIV) and diabetes. According to the WHO, 10% of TB patients also 

suffer from diabetes and 13% of the 9 million TB patients newly diagnosed in 2011 were coinfected 

with HIV [136]. Thus, the complexity of these disease treatment regimens (TB, TB-diabetes, or 

TB-HIV), in terms of polypharmacy, raises concerns regarding the potential for drug-drug 

interactions (DDIs) involving OCTs and/or OATs. The aim of the present study was to explore the 

inhibitory effects of EMB and its metabolite EDA on hOCT1, hOCT2, hOCT3, hOAT1, and 

hOAT3. Potent inhibition was further characterized by kinetic investigations to estimate IC50s, 

which were used to quantitatively evaluate the clinical DDI potential on these transporters during 

antituberculosis therapy. 

4.B MATERIALS AND METHODS 

4.B.1 Chemicals  

Tritiated p-aminohippuric acid ([3H]PAH), estrone sulfate ([3H]ES), and 1-methyl-4-

phenylpyridinium ([3H]MPP+) were purchased from PerkinElmer Life and Analytical Science 

(Waltham, MA). Unlabeled ES, MPP+, PAH, probenecid, and ethambutol dihydrochloride (EMB, 

95% purity) were obtained from Sigma-Aldrich (St. Louis, MO). Quinine monohydrochloride 

dihydrate was purchased from Acros Organics (Fair Lawn, NJ). 2,2’-(Ethylenediimino)dibutyric 

acid (EDA; 99% purity) was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). 
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Figure 4.1. Chemical structures of ethambutol (EMB) and its dicarboxylic metabolite 2,2'- 

(ethylenediimino)dibutyric acid (EDA).  

 

MW, molecular mass. 

 

 

4.B.2 Tissue culture  

Derivation of stably transfected Chinese hamster ovary (CHO) cell lines expressing hOAT1 

(CHO-hOAT1) and stably transfected human embryonic kidney 293 (HEK) cells expressing 

hOAT3 (HEK-hOAT3), hOCT1 (HEK-hOCT1), hOCT2 (HEK-hOCT2), or hOCT3 (HEK-

hOCT3), as well as their corresponding empty vector-transfected background control cell lines, 

has been described previously [14, 107, 121, 148]. CHO-hOAT1 cells were maintained at 37°C 

with 5% CO2 in phenol red-free RPMI 1640 medium (Gibco-Invitrogen, Grand Island, NY) 

containing 10% serum, 1% penicillin/streptomycin, and 1 mg/ml G418. HEK-hOAT3 cells were 

maintained at 37°C with 5% CO2 in high glucose Dulbecco’s modified Eagle medium (DMEM; 

Mediatech, Inc., Herndon, VA) containing 10% serum, 1% penicillin/streptomycin, and 125 µg/ml 

hygromycin B. The HEK-hOCT1, HEK-hOCT2, and HEK-hOCT3 cell lines were maintained at 
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37°C with 5% CO2 in high-glucose DMEM containing 10% serum, 1% penicillin/streptomycin, 

and 600 µg/ml G418. 

4.B.3 Cell accumulation assays  

  The procedure for the cell accumulation assay has been described previously [123, 124]. 

Briefly, cells were seeded into 24-well tissue culture plates at a density of 2 × 105 cells/well 

(without antibiotics) for 48 h. On the day of the cell transport experiment, the cells were 

equilibrated to serum-free conditions with transport buffer for 10 min (500 µL of Hanks’ balanced 

salt solution containing 10 mM HEPES, pH 7.4). Equilibration buffer was replaced with 500 µL 

of fresh transport buffer containing 1 µM unlabeled substrate spiked with [3H]PAH (0.5 µCi/ml), 

[3H]ES (0.25 µCi/ml), or [3H]MPP+ (0.25 µCi/ml) in the presence or absence of test compounds. 

At the end of the incubation, the cells were quickly rinsed three times with ice-cold transport buffer 

and lysed. The radioactivity of cell lysate was quantified by liquid scintillation counting, and the 

uptake profile was normalized by the total protein content determined by the Bradford method. 

The intracellular accumulation of substrates was reported as picomoles of substrate per milligram 

total protein. All uptake data were corrected for background accumulation in corresponding empty 

vector-transfected control cells. Substrate concentration and accumulation time used for kinetic 

analyses were determined previously [3, 124]. Kinetic calculations were performed using 

GraphPad Prism software version 5.0 (GraphPad Software Inc., San Diego, CA). The half-

maximal inhibitory concentrations (IC50s) were calculated using nonlinear regression with the 

appropriate model. Results were confirmed by repeating all experiments at least three times with 

triplicate wells for each data point in every experiment. 
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4.B.4 Drug-drug interaction (DDI) index calculation  

The DDI index [104] was estimated as the ratio of the maximal unbound EMB 

concentration in biofluid (unbound Cmax) after therapeutic dosing of EMB divided by transporter-

specific IC50s estimated by in vitro assay. A cutoff value of ≥ 0.1 is thought to indicate the need for 

a prospective in vivo pharmacokinetic study [104]. Specifically, the predicted intestinal lumen 

concentration of EMB after oral dosing (25-mg/kg dose, 70-kg patient body weight, 250 ml 

volume) was used to estimate the DDI index for hOCT3 located in the apical (luminal) membranes 

of enterocytes, while the portal venous plasma concentration (presystemic circulation) of EMB 

was used to estimate DDI index values for hOCTs in the basolateral membranes of hepatocytes 

(hOCT1 and hOCT3) and/or enterocytes (hOCT1 and hOCT2), and the plasma concentration 

(systemic circulation) of EMB was used to estimate DDI index values for hOCT1, hOCT2, and 

hOCT3 in the basolateral membranes of renal proximal tubule cells (Figure 4.2). The concentration 

of EMB in the intestinal lumen was estimated to be ~34 mM, assuming that patients (70 kg) take 

EMB with 250 ml of water. From clinical reports, after oral dosing (25 mg/kg) the plasma Cmax of 

EMB was 22.02 µM, with about 20% being protein bound [141, 144, 149]. Accordingly, the 

method of Ito et al. can be used to estimate drug concentrations in the portal vein [150]: Cport,vn = 

Cmax + (ka × D)/(Qh × Fa), where Cport,vn, ka, D, Qh, and Fa represent concentration in the portal vein, 

absorption rate constant, dose, hepatic blood flow rate (~1,200 ml/min), and fraction absorbed, 

respectively. For EMB, ka and Fa were reported as 0.48 h-1 and 80% [144, 149]. Using an average 

patient body weight of 70 kg, the predicted portal venous blood concentration for EMB was ~67 

µM.  
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4.B.5 Statistical analysis  

The data in the figures and the raw uptake scores are expressed as means ± standard 

deviations (SD), while IC50 estimates are means ± standard errors of the means (SEM). Statistical 

differences were assessed using one-way analysis of variance (ANOVA) followed by post hoc 

analysis with Dunnett’s t test (α = 0.05).
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Figure 4.2 Illustration relating expression of the examined human OCTs and OATs (SLC22 

family) in the intestine, liver and kidney.  

 

Predicted (GI lumen and portal circulation) and clinically determined (systemic circulation) 

concentrations of EMB are indicated. Renal expression and targeting of hOCT1 remains 

controversial, with conflicting reports about its location in the literature, however, the rat Oct1 

ortholog has been immunolocalized to the basolateral membrane of proximal tubule cells. 
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4.C RESULTS 

4.C.1 Inhibitory effects of EMB on hOCT1-, hOCT2-, and hOCT3-mediated MPP+ uptake 

 The inhibitory effects of EMB were examined on three OCT paralogs, hOCT1, hOCT2, 

and hOCT3, using MPP+ as a prototypical substrate. Significant accumulation of MPP+ (~33-fold) 

was observed in stably transfected hOCT1-expressing cells relative to empty-vector-transfected 

background control cells (132.6 ± 9.9 versus 4.0 ± 0.2 pmol/mg protein/10 min, respectively). The 

known hOCT inhibitor, quinine (200 µM), showed virtually complete inhibition of hOCT1-

mediated MPP+ uptake (>90% inhibition) (Figure 4.3A). Significant inhibition (66%) of hOCT1-

mediated MPP+ transport by EMB (at 100 µM versus 1 µM MPP+) was observed (Figure 4.3A). 

Subsequent dose-response (10-7 to 10-3 M EMB) studies were performed to derive the IC50 for 

EMB on hOCT1 (Figure 4.4, top). The IC50 of EMB for hOCT1 was estimated as 92.6 ± 10.9 µM. 

Therefore, the DDI indices were calculated to gauge DDI potency in enterocytes, hepatocytes, and 

proximal tubule cells, using the EMB concentration in gastrointestinal (GI) biofluid, portal venous 

blood, or the systemic circulation, as appropriate (Figure 4.2 and Table 4.1). 

We next examined the inhibitory effect of EMB on hOCT2-mediated transport. HEK-

hOCT2 cells exhibited marked accumulation of MPP+ (93.0 ± 5.2 pmol/mg protein/10 min) 

compared to background control cells (4.0 ± 0.2 pmol/mg protein/10 min). Quinine (200 µM) 

completely blocked (>99%) hOCT2-mediated MPP+ uptake (Figure 4.3B). The cell accumulation 

assay demonstrated that EMB at 100 µM significantly inhibited hOCT2-mediated MPP+ uptake 

(21%), and complete inhibition of hOCT2 transport activity (96%) was observed at 1 mM EMB. 

Kinetic studies were conducted to estimate the IC50 for EMB on hOCT2. Using EMB 

concentrations ranging from 10-6 to 10-3 M, the IC50 was estimated as 253.8 ± 90.8 µM (Figure 4.4, 
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middle). As shown in Table 4.1, the DDI index for hOCT2 expressed in kidney was estimated as 

0.1. 

 Stably transfected hOCT3-expressing (HEK-hOCT3) cells also showed marked 

accumulation of MPP+ (~30-fold) compared to empty vector-transfected background control cells 

(80.3 ± 11.3 versus 2.7 ± 0.1 pmol/mg protein/10 min). Such active transport was completely (99%) 

blocked by quinine at 200 µM (Figure 4.3C). Though EMB failed to show significant inhibition 

on hOCT3 transport activity at 100 µM, marked inhibition was observed with increasing 

concentrations (Figure 4.3C). EMB showed ~50% and ~80% inhibition at 1 and 10 mM, 

respectively. Further dose-response (10-3 to 10-1 M EMB) studies yielded an estimated IC50  of 4.1 

± 1.6mM (Figure 4.4, middle). Due to low EMB concentration in the presystemic (portal) and 

systemic circulation, DDI indices for hOCT3 in liver and kidney were negligible compared to the 

0.1 threshold value (Table 4.1). However, the high concentration of EMB in the GI biofluid yielded 

an estimated DDI index around 8.3.  
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Figure 4.3. Inhibition profiles of EMB on hOCT1, hOCT2 and hOCT3. 

 

A: Inhibition of hOCT1-mediated MPP+ uptake by EMB and quinine (200 μM). B: Inhibition of 

hOCT2-mediated MPP+ uptake by EMB and quinine (200 μM). C: Inhibition of hOCT3-mediated 

MPP+ uptake by EMB and quinine (200 μM). The concentration of MPP+ was 1 μM, incubation 

time was 10 min, and data shown were corrected for non-specific background. Values are mean ± 

SD of triplicate values. *** denotes p < 0.001 as determined by one-way ANOVA followed by 

Dunnett’s t-test. 
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Figure 4.4. Dose-response curves for EMB on hOCT1, hOCT2 and hOCT3. 

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-hOCT1, HEK-

hOCT2, and HEK-hOCT3 cells in the presence of increasing concentrations of EMB (10-7 to 10-1 

M) are shown. Data were corrected for nonspecific background measured in the empty vector 

control cells and are means ± SD of triplicate values. IC50s were determined with nonlinear 

regression and the “log(inhibitor) versus response” model using GraphPad Prism software. 
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4.C.2 Inhibitory effects of EDA on hOAT (hOAT1andhOAT3) and hOCT (hOCT1, hOCT2, and 

hOCT3) transport activity  

The zwitterionic dicarboxylic acid metabolite of EMB, EDA, was examined for 

interactions with hOAT1, hOAT3, hOCT1, hOCT2, and hOCT3 (Figure 4.5). The standard 

substrate used for hOAT1 was PAH, and that for hOAT3 was ES. Stably transfected hOAT1-

expressing (CHO-hOAT1) and hOAT3-expressing (HEKhOAT3) cells showed 5-fold- and 3-fold-

greater substrate accumulation than empty-vector-transfected background control cells, 

respectively (7.5 ± 1.6 versus 1.6 ± 0.2 pmol/mg protein/10 min for hOAT1 and 4.1 ± 0.2 versus 

1.6 ± 0.1 pmol/mg protein/ 10 min for hOAT3). The known OAT inhibitor probenecid completely 

blocked (>99%) hOAT1- and hOAT3-mediated substrate uptake (Figure 4.5). With the exception 

of hOAT3 (~17% inhibition), EDA (100 µM) failed to produce any significant inhibitory effects. 

Despite the modest inhibition of hOAT3, for all tested transporters IC50s of EDA were expected to 

be greater than 100 µM, which greatly exceeds the EDA concentration in the systemic circulation, 

and further kinetic analysis was not performed.  
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Figure 4.5 Inhibition profile of EDA on hOATs and hOCTs.  

 

(A) Inhibition of hOAT1-mediated PAH uptake by EDA (100 µM) and probenecid (1,000 µM).  

(B) Inhibition of hOAT3-mediated ES uptake by EDA (100 µM) and probenecid (1,000 µM).  

(C) Inhibition of hOCT1-mediated MPP+ uptake by EDA (100 µM) and quinine (200 µM).  

(D) Inhibition of hOCT2-mediated MPP+ uptake by EDA (100 µM) and quinine (200 µM).  

(E) Inhibition of hOCT3-mediated MPP+ uptake by EDA (100 µM) and quinine (200 µM).  

The concentration of substrates was 1 µM, incubation time was 15 min, and data were corrected 

for nonspecific background. Values are means ± SD of triplicate values. ***, P < 0.001, determined 

by one-way ANOVA followed by Dunnett’s t test. 

 

 

 

Table 4.1 Estimated DDI index values for EMB on hOCT-mediated transport after an oral 

dose of 25 mg/kg.   

 

 Drug-drug interaction indexa 

hOCT GI tract Liver Kidney 

hOCT1 0.6 0.6 0.2b 

hOCT2 NEc NE 0.1 

hOCT3 8.3 < 0.1 < 0.1 

a Drug-drug interaction index is defined as the unbound concentration of drug divided by the 

drug IC50 for the transporter of interest. A DDI index value of  >0.1 is thought to indicate the 

potential for clinically relevant DDIs. 
b Assuming basolateral targeting for hOCT1. 
c NE, transporter not expressed in this tissue. 
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4.D DISCUSSION 

Although numerous antitubercular drugs have been developed since the 1940s, TB is still 

a prevalent disease and a common cause of death worldwide. Recently, the spread of multidrug-

resistant TB strains (MDR-TB; estimated to account for 3.7% of new cases and 20% of previously 

treated cases) and the emergence of an extensively drug-resistant strain (XDR-TB; ~9% of MDR-

TB cases) that has proven virtually impossible to successfully treat have become new challenges 

to disease management [136, 151]. The appearance of XDR-TB has been reported in 84 countries, 

and the threat of its spread is viewed as a significant enough health issue that the United Kingdom 

has enacted regulations obligating people traveling from regions where TB is prevalent to have a 

current chest X-ray in their possession upon arrival in order to be issued a visa [152]. Isolation and 

therapy may be required for up to 2 years and can cost upwards of one million U.S. dollars per 

patient [152]. 

A further complication in TB therapy arises from the increasing clinical association of TB 

with diabetes and HIV, with TB becoming one of the leading causes of mortality among HIV 

infected patients [153, 154]. Indeed, of the ~9 million new TB patients diagnosed in 2011, 13% 

were reported to be coinfected with HIV, and of the 1.4 million TB deaths, 430,000 were HIV 

associated [136]. As a result, more TB patients need to be prescribed combination therapies to treat 

comorbidities or to minimize the development of drug resistance, making therapy management 

and compliance extremely complex and increasing the risk of patients’ experiencing unintended 

drug-drug interactions. Indeed, there are a number of case reports regarding adverse events, 

including nephrotoxicity, associated with EMB use during antituberculosis therapy [155-158]. In 

these patients, discontinuation of EMB resulted in improvement in renal function. 
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Competition for binding to membrane transporters is one mechanism resulting in DDIs, 

and while there is currently insufficient clinical data to conclusively determine transporter-

mediated DDI involvement, it is possible that hOCT-mediated DDIs explain some of these cases. 

As such, potential interactions between antituberculosis agents and drug transporters have received 

increased attention. For example, rifampin was identified as an inhibitor of P-glycoprotein 

(ABCB1), OATP1B1 (SLCO1B1), and OAPT1B3 (SLCO1B3), whereas pyrazinamide was 

demonstrated to inhibit hURAT1 (SLC22A12) [159-161]. EMB also was reported as a substrate 

for P-glycoprotein [146]; however, information regarding potential interactions with other drug 

transporters, especially drug uptake transporters, is virtually nonexistent. Additionally, many anti-

diabetic (metformin) and anti-HIV (lamivudine, raltegravir, tenofovir, and zalcitabine) agents have 

been identified as substrates and/or inhibitors of OCTs and OATs [2, 3, 6, 162-164]. Therefore, in 

order to more effectively and safely manage the longterm therapies of these complicated patient 

populations, improved understanding of the interactions of these drugs with the transporters 

responsible for their absorption, distribution, and elimination is needed. 

 A number of preclinical and clinical studies have demonstrated the role of hOCT1, -2, and 

-3 in the disposition and efficacy of metformin, a hypoglycemic agent widely used for the treatment 

of type 2 diabetes mellitus [105, 164-166]. In humans, subjects carrying a mutated form of hOCT1 

with reduced function exhibited significantly altered pharmacokinetic properties of metformin that 

manifested as increased area under the plasma concentration-time curve, increased Cmax, and 

reduced oral volume of distribution, as well as reduced glucose-lowering effects, i.e., loss of 

efficacy [105, 166]. Given the predicted EMB portal vein concentration of 67 µM after oral dosing 

[141, 144, 149, 150], the rank order of DDI potencies for hOCT1 was enterocytes (0.6) = 

hepatocytes (0.6) ≥ proximal tubule cells (0.2); all the DDI indexes are above the 0.1 threshold 
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value (Figure 4.2 and Table 4.1). These results indicated that 38% of hOCT1 transport activity 

might be inhibited in enterocytes and hepatocytes during routine EMB therapy, suggesting a strong 

potential for EMB-metformin interactions in TB-diabetes patients. The IC50 for hOCT3 was higher 

(4.1 ± 1.6 mM) than those for hOCT1 and hOCT2 (Figure 4.4, bottom). However, given the 

expected high luminal GI tract concentration of EMB after oral dosing (~34 mM after a 1,750-mg 

dose [25 mg/kg in a 70-kg patient] diluted in 250 ml GI fluid), hOCT3 may represent an important 

pathway for GI absorption of EMB due to its apical membrane localization in enterocytes (Figure 

4.2). Furthermore, the estimated DDI index of 8.3 (Figure 4.4, bottom, and Table 4.1) is 83-fold 

higher than the DDI threshold value and is indicative of a marked potential for EMB to interfere 

(89% inhibition) with intestinal absorption of coadministered drugs that are hOCT3 substrates, 

including metformin. 

 As many anti-HIV agents are also hOCT substrates, the same DDI potential exists for 

polypharmacy in TB-HIV patients. Recently, expression of hOCT1 and hOCT2 mRNA was 

detected in CD4 cells isolated from patients with HIV [167]. Therefore, EMB present in the 

systemic circulation also might reduce accumulation of anti-HIV agents in CD4 target cells that 

serve as a viral reservoir, resulting in loss of antiviral efficacy via inhibition of hOCT1 and/or 

hOCT2 function. Similarly, systemic EMB might impact hOCT1-mediated (DDI index = 0.2; ~20% 

inhibition) and/or hOCT2-mediated (DDI index = 0.1; ~9% inhibition) renal secretion. 

 hOCTs are also involved in the pharmacological action of platinum antineoplastics (e.g., 

cisplatin and oxaliplatin), raising the possibility for significant DDIs during chemotherapy in TB 

patients [168-171]. Patients receiving cisplatin therapy frequently experience cumulative dose-

dependent nephrotoxicity involving the proximal tubule [172-174]. Moreover, treatment with 

inhibitors of hOCTs (e.g., tetraethylammonium and cimetidine) prevented accumulation of 
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cisplatin in renal proximal tubule cells, and subsequently, cisplatin was identified as a competitive 

inhibitor of rat Oct2 [168, 175-178]. Thus, coadministration of EMB and cisplatin or oxaliplatin 

might alter associated hepatic and renal accumulation and toxicity. 

 In summary, our findings demonstrate the inhibitory effect of EMB on hOCT1, hOCT2, 

and hOCT3, while its zwitterionic dicarboxylic metabolite EDA failed to produce significant 

inhibition of hOCT1, -2, and -3, hOAT1, or hOAT3. EMB concentrations in the GI tract and portal 

vein after oral administration indicate the potential for marked DDIs in vivo for hOCT1 expressed 

in hepatocytes, enterocytes, and potentially renal proximal tubule cells. Human OCT3 in 

enterocytes exhibited the highest DDI index, suggesting that EMB might significantly alter 

cationic drug/nutrient absorption. Renal hOCT2 has a slight possibility of EMB DDIs. Future 

investigations encompassing in vivo DDI studies between EMB and known substrates for hOCT1, 

hOCT2, and hOCT3 appear to be necessary in order to optimize clinical safety and efficacy in 

these complex patient populations. 
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CHAPTER 5    

 

 

INHIBITION OF HUMAN ORGANIC CATION TRANSPORTERS BY THE 

ALKALOIDS MATRINE AND OXYMATRINE 

 

 

Drawn from manuscript published in Fitoterapia. 2014, 92: 206–210. 

 

 

 

 

5.A INTRODUCTION   

Matrine and oxymatrine are the major quinolizidine alkaloids derived from several 

traditional Chinese medicinal herbs including Sophora alopecuroides (kudouzi), Sophora 

flavescens (kushen) and Sophora subprostrata [179-181]. In vivo, oxymatrine can be metabolized 

to form matrine in the GI tract and liver [180, 181]. Pharmacological studies have demonstrated 

that these compounds exhibit anti-arrhythmic, anti-viral, anti-immunodeficiency and anti-cancer 

activities [179, 180, 182]. The China State Food and Drug Administration database of drug 

manufacturing certificates currently lists 306 commercial matrine and oxymatrine preparations 

(http://www.sda.gov.cn/WS01/CL0001/). These pharmaceutical products, including granule, 

capsule, suppository and injectable dosage forms have been used in China for the treatment of viral 

hepatitis, cancer, and cardiac disease [183-186]. 

The analysis of their chemical structures indicated that matrine (pKa = 7.8) and oxymatrine 

(pKa = 6.0-6.7) might be positively charged at physiological pH [187, 188]. As a result, they have 

the potential to interact with organic cation transporters (OCTs) belonging to the Solute Carrier 22 

http://www.sda.gov.cn/WS01/CL0001/
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(SLC22) family. OCTs mediate the absorption, distribution, and elimination of a broad array of 

positively charged endogenous and exogenous organic substances. Hundreds of clinically 

important therapeutics are known OCT substrates and/or inhibitors, including many antineoplastic 

(e.g., cisplatin, oxaliplatin and paclitaxel), antidiabetic (e.g. metformin) and antiviral (e.g., 

acyclovir and ganciclovir) agents [6, 163, 168, 189, 190]. OCTs are widely expressed in many 

organs including intestine, liver, kidney and brain [3, 6, 163]. Thus, OCT expression and function 

can be a major determinant of drug absorption across the GI tract, preferential tissue distribution, 

or active hepatic and renal drug excretion, which also leads to these transporters being frequent 

sites of drug-drug interaction (DDI). Indeed, numerous studies have demonstrated OCT-mediated 

DDIs between therapeutics [191]. Therefore, it is necessary to investigate potential OCT-mediated 

DDIs in order to establish informed safety and efficacy profiles for therapeutic products that 

contain OCT substrates and inhibitors. 

In the present study, inhibition of hOCT1-, hOCT2- and hOCT3-mediated 1-methyl-4-

phenylpyridinium (MPP+) transport by the alkaloids matrine and oxymatrine was explored. Potent 

inhibition was further quantified with kinetic studies to estimate the inhibitory constant (IC50). 

Inhibitory constant estimates were then used to aid evaluation of the potential for clinical DDIs on 

hOCTs.  
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5.B MATERIALS AND METHODS  

5.B.1 Chemicals  

Tritiated 1-methyl-4-phenylpyridinium ([3H]MPP+) was purchased from PerkinElmer Life 

and Analytical Science (Waltham, MA) and unlabeled MPP+ was obtained from Sigma-Aldrich 

(Saint Louis, MO). Matrine and oxymatrine were purchased from Fisher Scientific (Portland, OR). 

The chemical structures of matrine and oxymatrine are shown in Figure 5.1. Quinine 

monohydrochloride dihydrate was purchased from Acros Organics (Fair Lawn, NJ). 

 

 

 

Figure 5.1 Chemical structures of matrine and oxymatrine. 
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5.B.2 Tissue culture    

Derivation of the human embryonic kidney 293 (HEK) cells stably transfected with hOCT1 

(HEK-hOCT1), hOCT2 (HEK-hOCT2), hOCT3 (HEK-hOCT3), or the corresponding empty 

vector (background control), has been described previously [14, 107, 121, 148]. The HEK cell 

lines were maintained at 37C with 5% CO2 in DMEM high glucose media containing 10% serum, 

1% Pen/Strep and 600 µg/mL G418.   

5.B.3 Cell accumulation assay     

The procedure for cell accumulation assay was described previously with minor 

modification [123]. Briefly, cells were seeded into 24-well tissue culture plates at a density of 

2×105 cells/well in antibiotics-free medium. After 2 days, the cells were initially equilibrated with 

transport buffer for 10 min (500 µL of Hanks’ balanced salt solution containing 10 mM HEPES, 

pH 7.4). The cells were then treated with 500 µL of fresh transport buffer containing 1 µM 

unlabeled substrate spiked with [3H]MPP+ (0.25 µCi/mL) in the presence or absence of test 

compounds. At the end of the incubation, the cells were quickly rinsed three times with ice-cold 

transport buffer and lysed with 1M NaOH. The radioactivity of cell lysate was quantified by liquid 

scintillation counting, and the uptake profile was normalized by the total protein content 

determined by the Bradford method. The cellular uptake of substrates was shown as picomoles of 

substrate per milligram total protein. All uptake data were corrected for background accumulation 

in corresponding empty vector transfected control cells. Kinetic calculations were performed using 

GraphPad Prism Software version 5.0 (GraphPad Software Inc., San Diego, CA). The half 

maximal inhibitory concentration (IC50) was calculated using nonlinear regression with the 

appropriate model. All experiments were repeated at least three times with triplicate wells for each 

data point. 
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5.B.4 Statistical analysis    

Data in figures and reported raw uptake scores are expressed as mean ± SD, while IC50 

estimates are mean ± SEM. Statistical differences were analyzed using one-way ANOVA followed 

by Dunnett’s post-hoc t-test (α=0.05).  

5.C RESULTS  

5.C.1 Inhibitory effects of matrine and oxymatrine on hOCT1-mediated MPP+ uptake  

Stably transfected hOCT1-expressing (HEK-hOCT1) cells showed marked accumulation 

of MPP+ (~42 fold) compared to empty vector transfected background control cells (300 ± 53 vs. 

7.1 ± 0.4 pmol/mg protein/15 min, respectively). The known OCT inhibitor, quinine, showed 

virtually complete inhibition of hOCT1-mediated MPP+ uptake at 200 µM (>90% inhibition; 

Figure 5.2A). Matrine and oxymatrine produced 26% and 35% inhibition of hOCT1 transport 

activity at 100 µM (Figure 5.2A). Subsequently, a dose-response study (1 to 5000 µM) was 

performed on hOCT1 to derive the IC50 value for oxymatrine, which showed a much higher plasma 

level in patients (68 µM) compared to matrine (8.1 µM) [192, 193]. The IC50 value was estimated 

as 513 ± 132 µM (Figure 5.2B). 
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Figure 5.2 Inhibition of hOCT1 by matrine and oxymatrine.  

A: Inhibition of hOCT1-mediated MPP+ (1 µM) uptake by matrine (100 µM), oxymatrine (100 

µM) and quinine (200 µM) was assessed at 15 min. Values are mean ± SD of triplicate samples. 

*** denotes p < 0.001 as determined by one-way ANOVA followed by Dunnett’s t-test. B: Dose-

response curve for oxymatrine on hOCT1. One minute uptake of MPP+ (1 µM) was measured in 

HEK-hOCT1 cells in the presence of increasing concentrations of oxymatrine (1×10-6 to 5×10-3 

M). The IC50 was estimated using non-linear regression and the “log(inhibitor) vs. response” model 

(GraphPad Prism). All data were corrected for non-specific background measured in control cells. 
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5.C.2 Inhibitory effects of matrine and oxymatrine on hOCT2-mediated MPP+ uptake  

Significantly increased cellular accumulation of MPP+ was observed in stably transfected 

hOCT2-expressing cells (~21 fold) as compared to background control (empty vector) cells (150 

± 17 vs. 7.1 ± 0.4 pmol/mg protein/15 min, respectively). Similarly, quinine completely blocked 

(>99%) hOCT2-mediated MPP+ uptake at 200 µM (Figure 5.3). However, neither of these 

compounds showed significant inhibition at 100 µM. As a result, further kinetic analysis was not 

performed.  

5.C.3 Inhibitory effects of matrine and oxymatrine on hOCT3-mediated MPP+ uptake   

Like hOCT1 and hOCT2, stably transfected hOCT3-expressing cells exhibited greater 

MPP+ uptake (189 ± 27 pmol/mg protein/15 min) than control cells (7.1 ± 0.4 pmol/mg protein/15 

min), and this active transport was completely blocked (99%) by quinine at 200 µM (Figure 5.4). 

Since hOCT3 expressed on the apical side of enterocytes would likely be exposed to higher 

concentrations of these compounds after oral administration, the inhibitory effects on hOCT3 were 

investigated at increasing concentration levels. While matrine and oxymatrine each failed to 

produce significant inhibition on hOCT3 transport activity at 100 µM, marked inhibition was 

observed at elevated concentrations (Figure 5.4). Oxymatrine showed ~26% and ~42% inhibition 

at 1 and 3 mM, respectively, suggesting an IC50 ≥ 3 mM (Figure 5.4A). Similarly, matrine showed 

~34% and ~88% inhibition on hOCT3 at 1 and 6 mM, respectively, suggesting 1 mM < IC50 < 6 

mM (Figure 5.4B).     
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Figure 5.3 Inhibition of hOCT2 by matrine and oxymatrine.  

Inhibition of hOCT2-mediated MPP+ (1 µM) uptake by matrine (100 µM), oxymatrine (100 µM) 

and quinine (200 µM) was assessed at 15 min. Values are mean ± SD of triplicate samples. Data 

were corrected for non-specific background measured in control cells. 
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Figure 5.4 Inhibition of hOCT3 by matrine and oxymatrine.  

A: Inhibition of hOCT3-mediated MPP+ (1 µM) uptake by oxymatrine (100 µM, 1 mM and 3 mM) 

and quinine (200 µM) was assessed at 15 min. B: Inhibition of hOCT3-mediated MPP+ (1 µM) 

uptake by matrine (100 µM, 1 mM and 6 mM) and quinine (200 µM) was assessed at 15 min. Data 

were corrected for non-specific background measured in control cells. Values are mean ± SD of 

triplicate samples. *** denotes p < 0.001 as determined by one-way ANOVA followed by 

Dunnett’s t-test. 
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5.D DISCUSSION   

Herb-drug interactions, which can manifest as impaired drug efficacy and/or enhanced 

toxicity when patients use natural products and prescribed drugs in combination, have been 

documented in both pre-clinical and clinical investigations [194]. Increasingly, studies have 

demonstrated transporter proteins as being the site of drug-drug and botanical-drug interactions 

[123, 124, 195]. In China, the plant alkaloids matrine and oxymatrine are widely used in clinical 

therapy due to their broad applications, including the treatment of cancer and viral hepatitis. 

Therefore, the information on potential DDIs is even more critical for those who suffer from 

chronic diseases (e.g., HIV and hepatitis C viral infections, cancer) and depend on long-term or 

even life-time treatment. As OCTs interact with many anti-viral and anti-neoplastic drugs, there is 

a need to better understand the interaction of OCTs with the botanical alkaloids matrine and 

oxymatrine. 

hOCT1 plays an important role in hepatic and renal secretion and uptake, and inhibition of 

hOCT1 would potentially impair hepatic metabolism, biliary excretion and renal elimination. A 

number of antiretroviral drugs, including lamivudine, zalcitabine, pentamidine, and trimethoprim, 

have been identified as substrates of hOCT1, and oxymatrine and matrine are commonly combined 

with these drugs during antiviral therapy [163, 196]. In clinical practice, both injectable and oral 

dosage forms are used. The maximum plasma concentration (Cmax) was reported as 68 µM after 

i.v. infusion of 600 mg of oxymatrine [193]. Accordingly, the ratio of Cmax over IC50 (as an 

indicator of DDI potential) of oxymatrine on hOCT1 was 0.13. While the fraction of plasma 

protein binding in humans for oxymatrine is unknown, it was reported to be 19% in rats (i.e., 81% 

exists as the free form) [197]. Assuming similar binding for humans, the DDI index, calculated as 

unbound Cmax/IC50, still would be 0.1. Currently, the FDA Guidance for Drug Interaction Studies 
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suggests that a DDI index > 0.1 indicates that a DDI may occur in vivo [129]. While hOCT2 is 

another important transporter involved in renal elimination, the relatively low affinity for matrine 

and oxymatrine makes it unlikely to be a site for relevant DDIs involving these compounds. 

Studies with knockout mice and human tissue have confirmed expression and function of 

OCT3 in cardiac tissues, although the specific cell type(s) and membrane targeting are still unclear 

[198, 199]. Regardless, given the plasma levels associated with the clinical use of matrine and 

oxymatrine, significant DDIs with hOCT3 expressed in the heart are not indicated. In enterocytes, 

hOCT3 is expressed in the apical membrane and functions as an uptake transporter in the intestinal 

absorption of cationic drugs. Many in vivo studies have demonstrated that inhibition of apical 

enterocyte uptake transporters resulted in reduced bioavailability of substances handled by these 

transporters [200]. Both matrine and oxymatrine are water soluble (~100 g/L), therefore, as 

suggested by the FDA Guidance for Industry regarding the design and analysis of drug interaction 

studies, the concentration of matrine and oxymatrine in the GI tract after oral administration can 

be estimated by the ratio of the dose over 250 mL, assuming that patients take their medications 

with 250 mL of water [129]. According to the oral doses of matrine (400 mg) and oxymatrine (300 

mg) reported in clinical studies, the maximum concentration of each could reach 6.5 and 4.5 mM, 

respectively [192, 201]. Our results showed that matrine and oxymatrine produced 42% and 88% 

inhibition on hOCT3 transport activity at 3 and 6 mM, respectively, indicating that concentrations 

of matrine and oxymatrine in the GI tract after oral clinical dosing could be high enough to block 

hOCT3-mediated intestinal absorption of cationic drugs. Therefore, in vivo studies should be 

conducted to investigate the potential influence of matrine and oxymatrine on the intestinal 

absorption of co-administered therapeutics that are hOCT3 substrates. 
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In summary, our findings demonstrated the inhibitory effects of matrine and oxymatrine 

on hOCTs. Clinically, oxymatrine could interfere with hOCT1-mediated hepatic uptake and renal 

elimination, and hOCT3-mediated intestinal absorption processes. Matrine only has the potential 

to block hOCT3 expressed in enterocytes. In vivo DDI studies between oxymatrine or matrine and 

known substrates for hOCT1 and hOCT3 appear necessary in order to establish informed safety 

guidelines for the development, approval and use of products containing these active alkaloids.  
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CHAPTER 6    

 

 

INHIBITION OF HUMAN ORGANIC CATION TRANSPORTERS BY SYNTHETIC 

CATHINONE ANALOGS (“BATH SALTS”) 

 

 

 

 

6.A INTRODUCTION   

 The abuse of designer drugs ‘bath salts’ has been an escalating public health crisis in 

Europe and the United States (US). In 2011, the American Association of Poison Control Center 

received 6137 calls about exposures to ‘bath salts’, representing ~20-fold increase from the cases 

in 2010 (306 calls) [202]. In the United Kingdom, the reports of seizures related to ‘bath salt’ use 

increased from less than 10 cases in 2009 to 650 cases in 2010 [203]. The psychoactive 

components of ‘bath salts’, including methcathinone, 4-methylmethcathinone (mephedrone), 3,4-

methylenedioxymethcathinone (methylone) and 3,4- methylenedioxypyrovalerone (MDPV), are 

mainly synthetic derivatives of cathinone, a naturally occurring β-ketone analog of amphetamine 

found in the plant khat (Catha edulis). These synthetic cathinones, like other psychostimulants 

(e.g., amphetamine, methamphetamine, and cocaine), profoundly interact with monoaminergic 

systems in the central nervous system (CNS). Pharmacological studies have demonstrated that 

synthetic cathinones increases brain interstitial fluid concentration of some neurotransmitters (e.g. 

dopamine (DA) and serotonin (5-HT)), via increasing the release and/or inhibiting the uptake of 

these substances in the CNS, producing various psychoactive effects [204-208]. Evidence of this 

has been shown in vivo with microdialysis studies where mephedrone and methylone rapidly 
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increased the extracellular levels of DA and serotonin 5-HT in rat brain after subcutaneous (s.c.) 

or intravenous (i.v.) administration [204-206]. In addition, long-term serotonergic deficit was 

observed after repeated mephedrone injection [208]. To better understand the mechanism of action 

of synthetic cathinones, the interaction of bath salts with monoamine reuptake transporters in the 

CNS has received considerable interest. Currently, two distinguishable mechanisms of aminergic 

neurotransmitter clearance in the synapse have been recognized: uptake-1 (high-affinity, low 

capacity reuptake transporters) and uptake-2 (low-affinity, high capacity reuptake transporters) 

[91, 92]. Up to now, extensive studies have demonstrated the interaction between synthetic 

cathinones and uptake-1 transporters, such as dopamine transporter (DAT; SLC6A3), serotonin 

transporter (SERT; SLC6A4) and norepinephrine transporter (NET; SLC6A2) [206-208]. 

methcathinone, mephedrone, and methylone have been shown to be non-selective substrates of 

DAT, SERT and NET, stimulating the transporter-mediated release of monoamine 

neurotransmitters via reversal of normal transporter flux, while MDPV was demonstrated to be an 

inhibitor for DAT and NET without any measureable substrate activity [206, 208, 209].  The 

potential interaction of synthetic cathinones with uptake-2 transporters, including the organic 

cation transporters (OCTs; SLC22 family), has not been investigated.  

 OCTs are membrane proteins that interact with a broad variety of cationic and zwitterionic 

organic molecules [3]. Three OCT subtypes, OCT1 (SLC22A1), OCT2 (SLC22A2) and OCT3 

(SLC22A3) are widely expressed in many barrier organs (e.g. liver, kidney and choroid plexus) 

and in vivo mediate the absorption, distribution, and elimination of numerous endogenous and 

exogenous compounds [3]. Recently, there has been increasing evidence indicating that 

OCT2/Oct2 and OCT3/Oct3 are widely expressed in different brain regions and actively involved 

in the CNS aminergic neurotransmitter homeostasis. Firstly, when examined in vitro human (h) 
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OCTs and murine (m) Octs actively transport neurotransmitters such as 5-HT, NE and DA, albeit 

it with lower affinity (Km values in higher micromolar range) compared to uptake-1 transporters 

(Km values in nanomolar to lower micromolar range) [3, 75, 210-212]. Moreover, in vivo intra-

hypothalamic perfusion of the OCT inhibitor, decynium-22 (D-22), increased extracellular 5-HT 

concentrations (2-6.5 fold) in a dose-dependent manner [94]. This increase was comparable to that 

observed after fluoxetine (an selective serotonin reuptake inhibitor) was administered via the same 

route [95]. The expression and function of mOct3 in the CNS were significantly increased in SERT 

knockout mice, indicating that mOct3 may serve as a compensation modulator of neurotransmitters 

in brain when SERT function is compromised [100, 101]. Furthermore, mOct2 knockout mice 

displayed reduced tissue concentration of NE and 5-HT in several brain regions (e.g., cortex, 

hippocampus, and striatum) as compared to wild-type mice [77]. Together, converging lines of 

evidence lead to the hypothesis that OCTs function as important components of the uptake-2 

pathway, and thus may represent an equally important target for psychostimulants such as 

synthetic cathinone as the uptake-1 pathway.  

 As low molecular weight compound that are protonated in the physiological environment 

(pH=7.4), synthetic cathinones have the potential to be substrates and/or inhibitors of OCTs. The 

aim of the present study was to explore the inhibitory effects of mephedrone, methylone and 

MDPV on hOCT1-, hOCT2-, and hOCT3-mediated transporter. In addition, since 

S(-)methcathinone and R(+)methcathinone showed different psychoactive activities [213], the 

inhibitory effects of each methcathinone enantiomer on hOCT1, hOCT2 and hOCT3 were also 

investigated. Potent inhibition was further characterized by kinetic investigations to estimate IC50 

values, which were used to quantitatively evaluate the potential of drug-neurotransmitter 
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interaction or drug-drug interactions (DDIs) in the CNS and peripheral organs after bath salts 

consumption.  

6.B METHODS 

6.B.1 Chemicals   

 Tritiated 1-methyl-4-phenylpyridinium ([3H]MPP+) was obtained from PerkinElmer Life 

and Analytical Science (Waltham, MA) and unlabeled MPP+ was purchased from Sigma-Aldrich 

(Saint Louis, MO). Quinine monohydrochloride dihydrate was obtained from Acros Organics (Fair 

Lawn, NJ). S(-)methcathinone, R(+)methcathinone, mephedrone, methylone and MDPV were 

synthesized as previously described [213-216]. The chemical structures of S(-)methcathinone, 

R(+)methcathinone, mephedrone, methylone and MDPV are shown in Figure 6.1.  
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Figure 6.1 Chemical structures of synthetic cathinones.  
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6.B.2 Tissue culture   

 Derivation of the human embryonic kidney 293 (HEK) cells stably transfected with hOCT1 

(HEK-hOCT1), hOCT2 (HEK-hOCT2), hOCT3 (HEK-hOCT3), as well as the corresponding 

empty vector transfected cells (background control), has been described previously [14, 148]. The 

HEK cell lines were maintained in DMEM high glucose media containing 10% of fetal bovine 

serum and 1% Pen/Strep at 37°C in an atmosphere of 5% CO2. G418 (600 μg/mL) was added to 

the media for the selection of transfected cells.      

6.B.3 Cell accumulation assays   

 The procedure for cell accumulation assay has been described previously with minor 

modification [123, 124]. Briefly, 2×105 cells/well were seeded in 24-well tissue culture plates in 

the absence of antibiotics and grown until confluence. Before the cell transport experiment, cells 

were preincubated in 500 μL transport buffer (Hanks’ balanced salt solution containing 10 mM 

HEPEs, pH 7.4) for 10 min. After equilibration, the transport buffer was replaced with 500 μL of 

fresh transport buffer containing unlabeled MPP+ (1 μM) spiked with [3H]MPP+ (0.25 μCi/mL) in 

the presence or absence of test compounds. At the end of the incubation, the cells were quickly 

rinsed three times with ice-cold transport buffer and lysed with 1 M NaOH. The intracellular 

radioactivity of cell lysate was counted by liquid scintillation and reported as pmol of substrate per 

milligram total protein. The total protein content of each well was determined by the Bradford 

method. All uptake data were corrected for background accumulation in corresponding empty 

vector transfected cells. Kinetic calculations were performed using GraphPad Prism Software 

version 5.0 (GraphPad Software Inc., San Diego, CA). The half maximal inhibitory concentration 

(IC50) was calculated using nonlinear regression with the appropriate model. All experiments were 

repeated at least three times with triplicate wells for each data point. 
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6.B.4 Statistics   

 Data in figures and reported raw uptake scores are expressed as mean ± SD, while IC50 

estimates are mean ± SEM. Statistical differences were analyzed using one-way ANOVA followed 

by Dunnett’s post-hoc t-test (α=0.05).   

6.C Results  

6.C.1 Inhibitory effects of synthetic cathinones on hOCT1-mediated MPP+ uptake   

 Stably transfected HEK-hOCT1 cells demonstrated marked accumulation of MPP+ (~21 

fold) compared to empty vector control cells (43.8 ± 1.0 vs. 2.13 ± 0.2 pmol/mg protein/10 min, 

respectively; data not shown). The known hOCT1 inhibitor, quinine (200 µM), produce virtually 

complete inhibition of hOCT1-mediated MPP+ uptake (>90% inhibition; Figure 6.2). The cell 

accumulation assay demonstrated that mephedrone, methylone, MDPV, as well as both optical 

isomers of methcathinone, significantly inhibited hOCT1-mediated MPP+ transport (>50%) at 100 

µM (Figure 6.2). Dose-response studies were performed to estimate the IC50 values of synthetic 

cathinones for hOCT1. Decreased transport activity of hOCT1 was observed in the presence of 

increasing concentrations of synthetic cathinones (0.01-5000 µM). The IC50 values of synthetic 

cathinones for hOCT1 ranged from 6.5-31.5 µM (Figure 6.3 and Table 6.1). Among five synthetic 

cathinones, MDPV (IC50 = 6.5 ± 1.3 μM) exhibited the lowest IC50 for hOCT1, whereas 

S(-)methcathinone (IC50 = 31.5 ± 8.9 μM) showed the highest IC50 value for hOCT1. 

R(+)methcathinone exhibited ~4 fold stronger affinity with hOCT1 than S(-)methcathinone (IC50 

= 8.4±1.9 μM vs. 31.5 ± 8.9 μM).   
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Figure 6.2 Inhibition of hOCT1-, hOCT2 and hOCT3-mediated uptake by synthetic 

cathinones.  

Cellular uptake of [3H]MPP+ (1 µM, 10 min) was measured in HEK-hOCT1, HEK-hOCT2 and 

HEK-hOCT3 expressing cells in the absence and presence of synthetic cathinones (100 µM) or 

quinine (200 µM). All data were corrected for background MPP+ accumulation measured in 

corresponding empty vector transfected cells. Values are mean ± S.D. of triplicate values. 

Significant inhibition denoted by ***p < 0.001 as determined by one-way ANOVA followed by 

Dunnett’s t-test.   
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Figure 6.3 Dose–response curves for synthetic cathinones with respect to hOCT1.  

One minute uptake of [3H]MPP+ (1 µM) in HEK-hOCT1 cells was measured in the presence of 

increasing concentrations (10-7 to 10-2.3 M) of test compounds. Data were corrected for non-specific 

background measured in the corresponding empty vector transfected background control cell. IC50 

values were determined with nonlinear regression and the “log(inhibitor) vs. response” model. 

Experiments were repeated three times in triplicate with the mean IC50 ± S.E.M. reported in Table 

6.1. Graphs shown are from representative experiments with values plotted as mean ± S.D. (n = 

3).    
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6.C.2 Inhibitory effects of synthetic cathinones on hOCT2-mediated MPP+ uptake   

 Markedly increased cellular accumulation of MPP+ was observed in stably transfected 

HEK-hOCT2 cells (~34 fold) as compared to background control (empty vector) cells (56.7 ± 2.1 

vs. 1.5 ± 0.2 pmol/mg protein/10 min, respectively; data not shown). Similarly, quinine completely 

blocked (>99%) hOCT2-mediated MPP+ uptake at 200 μM (Figure 6.2). The tested synthetic 

cathinones (100 μM) produced approximately 80% inhibition on hOCT2-mediated MPP+ transport 

(Figure 6.2). Kinetic studies, applying increasing concentrations of test compounds (0.01-5000 

µM), were performed to determine the IC50 values on hOCT2. S(-)methcathinone demonstrated 

the lowest IC50 value (IC50 = 11.9 ± 2.9 μM) for hOCT2, and R(+)methcathinone, mephedrone, 

methylone, and MDPV showed similar IC50 values on hOCT2, ranging from 16.7 to 20.9 μM 

(Figure 6.4 and Table 6.1). 
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Figure 6.4 Dose–response curves for synthetic cathinones with respect to hOCT2.  

 

One minute uptake of [3H]MPP+ (1 µM) in HEK-hOCT2 cells was measured in the presence of 

increasing concentrations (10-7 to 10-3 M) of test compounds. Data were corrected for non-specific 

background measured in the corresponding empty vector transfected background control cell. IC50 

values were determined with nonlinear regression and the “log(inhibitor) vs. response” model. 

Experiments were repeated three times in triplicate with the mean IC50 ± S.E.M. reported in Table 

6.1. Graphs shown are from representative experiments with values plotted as mean ± S.D. (n = 

3).   
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6.C.3 Inhibitory effects of synthetic cathinones on hOCT3-mediated MPP+ uptake   

 Cellular accumulation of MPP+ was significantly increased in stably transfected HEK-

hOCT3 cells (~21 fold) as compared to background control (empty vector) cells (26.9 ± 2.9 vs. 

1.3 ± 0.2 pmol/mg protein/10 min, respectively; data not shown). Inhibition by quinine (200 µM) 

was complete (>99%; Figure 6.2). R(+)methcathinone, mephedrone and MDPV showed marked 

inhibitory effects on hOCT3 transport activity at 100 μM, while methylone and S(-)methcathinone 

failed to produce significant inhibition. Accordingly, further kinetic studies were performed to 

derive the IC50 values for R(+)methcathinone, mephedrone and MDPV (Figure 6.5 and Table 6.1). 

Estimated IC50 values of R(+)methcathinone, mephedrone, and MDPV were 174.0 ± 16.7 µM, 

334.7 ± 86.7 µM, 130.5 ± 18.0 µM , respectively.  
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Figure 6.5 Dose–response curves for synthetic cathinones with respect to hOCT3.  

 

One minute uptake of [3H]MPP+ (1 µM) in HEK-hOCT3 cells was measured in the presence of 

increasing concentrations (10-6 to 10-2.3 M) of test compounds. Data were corrected for non-specific 

background measured in the corresponding empty vector transfected background control cell. IC50 

values were determined with nonlinear regression and the “log(inhibitor) vs. response” model. 

Experiments were repeated three times in triplicate with the mean IC50 ± S.E.M. reported in Table 

6.1. Graphs shown are from representative experiments with values plotted as mean ± S.D. (n = 

3).   
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Table 6.1 Estimated IC50 (µM) and inhibitory potency of synthetic cathinone for hOCT1, hOCT2 and hOCT3.  

Compounds 

IC50 (μM) 
fu

a
 

(%) 

Cb 

(μM) 

C brain
c 

(μM) 

Brain  

(% inhibition) 

Heart 

 (% inhibition) 

Liver and kidney 

(DDI index)d 

hOCT1 hOCT2 hOCT3 hOCT2 hOCT3 hOCT3 hOCT1 hOCT2 hOCT3 

Mephedrone 8.6 ± 2.2 18.8 ± 2.7 334.7 ± 86.7 
78.4

% 

0.7-

124.2f 

0.6-

99.4 
84% 23% 35% 20.6 9.4 0.5 

Methylone 11.5 ± 1.1 20.9 ± 3.4 >> 100 70% 0.3-5.4f 0.2-4.3 17% NDh ND 0.6 0.3 < 0.1 

MDPV 6.5 ± 1.3 16.7 ± 1.2 130.5 ± 18.0 ?e 2.3f 0.1-3.3 17% 2% < 3% 0.5 0.2 < 0.1 

S(-)methcathinone 31.5 ± 8.9 11.9 ± 2.9 >> 100 ? 3.1g 4.5 27% ND ND < 0.1 0.2 < 0.1 

R(+)methcathinone 8.4 ± 1.9 20.4 ± 4.5 174.0 ± 16.7 ? 3.1g 4.5 18% 3% < 2% 0.3 0.1 < 0.1 

Values are reported as mean ± S.E.M.  

a fu, fraction unbound in plasma. 
b Clinical drug concentrations in blood or serum were reported from [217-223].  
c Brain concentration of mephedrone as reported in [217, 221]. Brain concentrations of methylone, MDPV, S(-)methcathinone and 

R(+)methcathinone were estimated based on brain to blood concentration ratio.  
d Drug-drug Interaction index is defined as the unbound concentration of drug divided by the drug IC50 for the transporter of interest. 

A DDI index value > 0.1 is thought to indicate the potential for clinically relevant DDIs 
e ?, unknown and assume the plasma protein binding is 70%.  
f blood concentration. 
g serum concentration.  
h ND, not determined.   
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6.D Discussion   

The abuse of synthetic cathinones has exhibited a dramatic increase in the US and Europe 

over the last decade, which brings serious public health concerns. However, there is limited 

understanding about the mechanism of action of these notorious compounds. Even though 

numerous studies have demonstrated that synthetic cathinones regulate extracellular concentration 

of DA and 5-HT via uptake-1 transporters, DAT, SERT, and NET, exerting psychoactive effects 

[206-208], the influence from other pathways, including those that involve uptake-2 transporters, 

might be also important. Given the increasing evidence showing the expression of OCTs in 

astrocytes and cerebellum granule neurons in cerebellum, subfornical organ, dorsal raphe, 

hypothalamic nuclei, cortex and hippocampus regions in brain [77, 78, 82, 224-226], and their 

active role in the regulation of neurotransmitter homeostasis, it is necessary to investigate the 

interaction of synthetic cathinones with hOCTs. 

In the present study, all tested synthetic cathinones were found to be potent inhibitors for 

hOCTs. Specifically, three commonly identified synthetic cathinones, mephedrone, methylone, 

and MDPV, demonstrated stronger inhibitory effects on hOCT1 and hOCT2 as compared to 

hOCT3. In addition, methcathinone isomers exerted unique patterns of interaction with hOCTs. 

The IC50 value of S(-)methcathinone for hOCT1 is ~4 fold higher (poorer affinity) than 

R(+)methcathinone, whereas the IC50 value of R(+)methcathinone for hOCT2 is ~2 fold higher 

(poorer affinity) than S(-)methcathinone. Similar to hOCT2, R(+)methcathinone, rather than 

S(-)methcathinone, showed significant inhibitory effects on hOCT3, albeit with the poorest affinity 

(~174 µM).  

In order to estimate the inhibitory effects of synthetic cathinones for organic cation 

transporters in the CNS, it is important to know the brain concentration of these compounds [227]. 
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As the brain concentration of MDPV was reported as 0.1-3.3 µM in postmortem cases [217, 221], 

the maximum possible inhibition on hOCT2 in the brain would be 17%, while such inhibitory 

effects on hOCT3 is low (<3%). In addition, the blood concentration of mephedrone and 

methylone were 0.7-124.2 µM [218, 219, 222] and 0.3-5.4 µM [217, 218], respectively. Even 

though the brain concentration of the two compounds is not available, as brain to blood 

concentration ratio of MDPV was 0.8 [228], we assumed that these cathinone derivatives obtained 

similar partitioning between blood and brain. As the consequence, mephedrone was predicted to 

produce maximally 84% and 23% inhibition on hOCT2 and hOCT3, respectively, while methylone 

is less likely to cause significant inhibition of hOCT2 and hOCT3 (~17% and less than 4% on 

hOCT2 and hOCT3, respectively). Therefore, inhibition of hOCT2 and hOCT3 in the CNS by 

synthetic cathinones could very well result in increase in extracellular monoamine levels and 

possibly cause psychoactive effects [77, 95, 208].  

In mice, S(-)methcathinone was about 3-5 times more potent than R(+)methcathinone 

locomotor activity tests and training effects [213, 229]. The discriminative central stimulant effects 

of these methcathinone optical isomers may be, at least partially, due to their differing affinities 

for OCTs/Octs. Perhaps indicating a greater role for OCTs as this transporter exhibited stronger 

interactions than OCT1 or 3 with S(-)methcathinone. The fact that hOCT2 preferentially interacts 

with S(-)methcathinone might contribute to differing pharmacological effects of these two 

compounds. 

In addition to the psychoactive effect, cardiovascular complications (e.g. sinus tachycardia, 

palpitations and hypertension) are very common among ‘bath salts’ abusers [230, 231]. The 

cardiovascular syndromes are often associated with reduced cardiac extraction of NE from the 

plasma to heart [232-234], which might at least partially, be attributed to OCTs which are also 
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expressed in capillary and vascular endothelial cells of the heart [15, 199]. Indeed, O-methyl-

isoprenaline, the selective hOCT3 inhibitor, abolished concentration difference of NE between the 

interstitial space and vascular bed in rat heart [235, 236]. In the present study, the IC50 values of 

mephedrone, MDPV and R(+)methcathinone on hOCT3 were 334.7 ± 86.7 µM, 130.5 ± 18.0 µM 

and 174.0 ± 16.7 µM, respectively. Based on the reported clinical blood concentration of 

mephedrone (124.2 µM) [218, 219, 222], the plasma protein binding (21.6%) [237] and assuming 

55% plasma to blood ratio [237], mephedrone is predicted to inhibit 35% transport activity for 

hOCT3. 

OCTs also play an important role in biliary and renal elimination. hOCT1 and hOCT3 are 

expressed in the sinusoidal membrane of hepatocytes and represent the first step in the hepatic 

uptake of many substances, while hOCT2 and hOCT3 are expressed on the basolateral side of 

proximal tubular cells in the kidney [3]. Clinical studies have demonstrated that impairment of 

transport function of OCTs might alter the pharmacokinetic properties of other drugs that are 

substrates for OCTs such as metformin and morphine [105, 166, 238]. The Food and Drug 

Administration recommends using DDI index (ratio of unbound Cmax to Ki or IC50) to estimate the 

drug-drug interaction potency [129], and DDI index > 0.1 indicates the significant DDI potential 

in vivo. As shown in Table 6.1, these compounds demonstrated DDI index greater than 0.1 at least 

for one hOCT subtype, and mephedrone showed much higher DDI index ( >9 ) on hOCT1 and 

hOCT2. These results suggested that synthetic cathinones have a great potential to inhibit hOCTs, 

rendering reduced hOCT1- and hOCT2- mediated renal tubular secretion and biliary elimination. 

Interaction of hOCT3 was not predicted to result in any potentially significant DDIs. Forensic 

studies have reported that synthetic cathinone abusers are also likely to simultaneously take heroin, 

cocaine and morphine [217]. Morphine is an opioid analgesic as well as a major metabolite of 
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heroin and cocaine [238]. A previous study has demonstrated that morphine was a substrate of 

hOCT1 and the plasma concentrations of morphine in healthy volunteers were significantly 

affected by hOCT1 polymorphisms [238]. Therefore, combination use of synthetic cathinones and 

morphine, heroin or cocaine may increase the plasma concentration of morphine to the lethal range. 

Indeed, toxicological studies demonstrated that toxicity and rate of fatality were significantly 

amplified when ‘bath salts’ were combined with abused drugs [239-241].    

In summary, our findings demonstrated that mephedrone, methylone, MDPV, 

S(-)methcathinone and R(+)methcathinone are inhibitors for hOCT1, hOCT2 and hOCT3. These 

finding suggest that the psychoactive effects of synthetic cathinones might be due to their 

inhibitory effects on hOCT2 and hOCT3 that modulate neurotransmitters reuptake in the CNS. In 

addition, the inhibition of hOCT3 by synthetic cathinone, interferes with NE reuptake in cardiac 

endothelial cells and could potentially cause cardiovascular complications. Finally, synthetic 

cathinones showed significant DDI potential on hOCT1 and hOCT2, which might explain the 

enhanced toxicities when bath salts were combined with other abused drugs such as codeine, 

morphine and heroin. The role of OCTs in the biological effects of synthetic cathinones as well as 

elucidating their in vivo DDI potential would be important future studies to conduct to provide 

increased insight in completing the full mechanistic picture.   
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CHAPTER 7  

 

 

THERAPEUTIC POTENTIAL OF NOVEL ORGANIC CATION TRANSPORTER 

(OCT; SLC22 FAMILY) INHIBITORS IN DEPRESSION  

 

 

 

 

7.A INTRODUCTION  

Depressive disorder is among the most serious and burdensome psychiatric illnesses in the 

world. Currently, approximately 17% of the US population suffers from depression and it 

generates about 60 billion dollars in medical costs annually in the US [242]. Although numerous 

classes of psychoactive drugs are used in the treatment of depression, undesirable side effects and 

delayed onset of action are often observed in clinical applications [243, 244].  In addition, current 

antidepressant treatment fails to produce beneficial effects in nearly 50% of the patient population 

[243, 245-247].   

Depression is often associated with a reduction of monoaminergic neurotransmitters such 

as serotonin (5-HT) and/or norepinephrine (NE) in the synaptic clefts [92, 246]. Currently, most 

antidepressants are thought to exert their pharmacological effects via blocking uptake-1, the high 

affinity, low capacity reuptake system, i.e., serotonin transporter (SERT) and norepinephrine 

transporter (NET). For example, the most prevalent antidepressants on the market, selective 

serotonin reuptake inhibitors (SSRIs, e.g., fluoxetine and sertraline) and selective serotonin and 

norepinephrine reuptake inhibitors (SNRIs, e.g, venlafaxine and duloxetine), target SERT and/or 

NET. However, there is also a second low-affinity, high capacity clearance pathway for biogenic 
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amines, uptake-2. Increasing evidence has indicated that organic cation transporter 2 (OCT2) and 

3 (OCT3), which are widely expressed in the CNS, interact with dopamine (DA), 5-HT and NE 

and likely represent an important component of the uptake-2 pathway, playing a role in the 

regulation of CNS neurotransmitter homeostasis [92]. For example, intra-hypothalamic perfusion 

of the OCT inhibitor, decynium-22, dose-dependently increased extracellular 5-HT concentrations 

by approximately 2-6.5 fold [94], which was comparable to the action of fluoxetine (~4 fold) via 

the same route of administration [95]. Furthermore, the expression and function of murine (m)Oct3 

in the CNS was significantly increased in SERT knockout mice, indicating that mOct3 may be an 

important modulator of neurotransmitters in brain when SERT function is compromised [100, 

101]. Therefore, OCTs may represent unrecognized targets of known antidepressants and may 

impact their pharmacological action.  

Recently, a series of quinazolines and guanidines were developed as potential novel 

therapeutic agents for depression in the laboratory of Dr. Dukat [248, 249]. The experimentally 

determined logP value for KEO-099 was 1.86, suggesting a favorable ability to penetrate the 

blood-brain barrier [248, 249]. In the murine tail suspension test (TST) model, acute administration 

of KEO-099 via intraperitoneal injection significantly decreased total time immobile relative to 

the saline group, suggesting a decrease in depression-related behavior in the KEO-099 treatment 

group [248]. Further studies suggested that these compounds may not produce inhibition of uptake-

1, since their binding affinities for SERT and NET were greater than 10 µM (Dr. Dukat laboratory, 

unpublished data). Quinazolines and guanidines are low molecular weight compounds and, based 

on their chemical structures, are protonated in the physiological environment. Thus, they might be 

OCT substrates or inhibitors and potentially possess antidepressant-like activities. To better 

understand the pharmacological action and mechanism of action of these compounds, we 
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examined the interaction of quinazolines with human (h)OCT1-3 and mOct1-3, to elucidate if 

OCTs are contributing to the pharmacological action of these compounds. Median effective dose 

(ED50) values of lead compounds were characterized for their in vivo CNS effects in mice by TST. 

Finally, a hOCT3 3-D homology model was constructed and docking studies were performed on 

selected compounds to better understand the interaction between hOCT3 and its substrates or 

inhibitors.   

7.B MATERIALS AND METHODS 

7.B.1 Chemicals      

Tritiated MPP+ ([3H]MPP+) and 5-hydroxytryptamine ([3H] 5-HT) were purchased from 

PerkinElmer Life and Analytical Science (Waltham, MA). Unlabeled MPP+, serotonin 

hydrochloride and imipramine hydrochloride was obtained from Sigma-Aldrich (Saint Louis, 

MO). Quinine monohydrochloride dihydrate was purchased from Acros Organics (Fair Lawn, NJ). 

Saline solution (0.9% sodium chloride) was purchased from Baxter, Inc. (Deerfield, IL). The seven 

quinazolines (GSW-286, KEO-093, KEO-099, OIA-008, KAI-333, MDA-049 and KAI-302) and 

six guanidines (KAI-323, MD-354, MDA-057, MDA-058, KAI-325 and KAI-324) were 

synthesized and provided by Dr. Dukat laboratory. Details of synthetic routes are not provided at 

this time. The chemical structures and physiochemical properties of quinazolines and guanidines 

were determined by SYBYL-X version 2.1 (Table 7.1).     
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       Quinazolines                         Guanidines 

 

Categories 
 

Compounds R1 R2 R3 MW pKa
a cLogPa 

Rotatable 

Bondsa 

Quinazolines 

 
GSW-286 H H H 148.2 9.9 0.5 0 

 
KEO-093 H H Cl 182.6 9.1 1.2 0 

 
KEO-099 H Cl H 181.6 9.2 1.2 0 

 
OIA-008 Cl H H 182.6 9.2 1.2 0 

 
KAI-333 H F H 167.2 9.4 -0.3 0 

 
MDA-049 H CH3 H 162.2 9.8 1.0 0 

 
KAI-302 CH3 H H 163.2 9.8 1.0 0 

Guanidines 

 
KAI-323 H H H 136.2 10.9 -0.1 1 

 
MD-354 Cl H H 170.6 10.2 0.6 1 

 
MDA-057 H Cl H 169.6 10.2 0.6 1 

 
MDA-058 H CH3 H 150.2 10.8 0.4 1 

 
KAI-325 H  C(CH)3 H 192.3 10.5 1.8 1 

 
KAI-324 H CH2C6H5 H 226.3 9.5 2.0 3 

Table 7.1 Physicochemical properties of quinazolines and guanidines.   
a Values determined by SYBYL-X version 2.1.  
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7.B.2 Tissue Culture    

 Stably transfected human embryonic kidney 293 (HEK) cells expressing hOCT1 (HEK-

hOCT1), hOCT2 (HEK-hOCT2) hOCT3 (HEK-hOCT3), mOct1 (HEK-mOct1), mOct2 (HEK-

mOct2), or mOct3 (HEK-mOct3), as well as their corresponding empty vector transfected 

background control cell lines, were maintained at 37oC with 5% CO2 in DMEM high glucose 

media containing 10% serum and 1% Pen/Strep as described previously [14, 148, 250].   

7.B.3 Cell accumulation assays          

Cells were seeded into 24-well tissue culture plates at a density of 2×105 cells/well (without 

antibiotics) for 48 hours. On the day of the experiment, cells were preincubated in 500 μL transport 

buffer for 10 min and treated with unlabeled MPP+ (1 μM) spiked with [3H]MPP+ (0.25 μCi/mL) 

or unlabeled 5-HT spiked with [3H]serotonin (0.25 μCi/mL) in the presence of increasing 

concentrations (0.01 to 200 µM) of unlabeled test compounds for the times indicated. The 

radioactivity of cell lysate was quantified by liquid scintillation counting and normalized by total 

protein content in each well. Data were corrected for non-specific background in corresponding 

empty vector transfected cells. The half maximal inhibitory concentration (IC50) was calculated 

using nonlinear regression and the “log(inhibitor) vs. response” model using GraphPad Prism 

Software version 5.0 (GraphPad Software Inc., San Diego, CA). Substrate accumulation was 

reported as picomoles of substrate per milligram protein. Substrate concentration and 

accumulation time used for kinetic analysis of hOCT1, hOCT2, hOCT3, mOct1, mOct2 and mOct3 

(1 µM for MPP+ 1 min) were determined previously [3, 107]. The time-course profile for hOCT2-

mediated 5-HT accumulation was determined in this study. Experiments were repeated at least 

three times in triplicate and the results were reported as IC50 ± SEM.  Data in figures and reported 
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raw uptake scores were expressed as mean ± SD. Statistical differences were assessed using one-

way ANOVA followed by Dunnett’s t-test (α=0.05) for multiple post-hoc comparisons.   

7.B.4 Mode of inhibition for lead compounds  

The mode of inhibition of lead compounds was identified by mixed-model inhibition 

analysis in stably transfected hOCT2 and hOCT3 expressing cells, respectively. The following 

equations were used to assess the mode of inhibition:   

Vmax
app

=
Vmax

(1 + [I]/(α × ki))
 

Km
app

= Km

1 + [I]/ki
(1 + [I]/(α × ki))

 

Y =
Vmax
app

× [S]

Km
app

+ [S]
 

where Vmax is the maximum transport velocity in the absence of the inhibitor; Km is the Michaelis-

Menten constant for the substrate; ki is the inhibition constant estimated from data set under 

analysis; Y is the substrate uptake rate observed in the experiment; S and I are the concentration 

of substrate and inhibitor, respectively. The mode of inhibition is determined by the parameter α: 

if α value is greater than 1, it indicates competitive inhibition. Otherwise, it indicates the mode of 

inhibition is noncompetitive (α = 1) or uncompetitive (0< α < 1).  

In this study, the mode of inhibition experiments were performed under three independent 

conditions: no inhibitor, plus two different inhibitor concentrations. MPP+ uptake mediated by 

hOCT2 and hOCT3 in the presence and absence of selected inhibitors was plotted as a function of 

substrate concentration. All the data were corrected for background substrate accumulation in 
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empty vector control cells. Non-linear regression was used to fit the data into the equations shown 

above using GraphPad Prism Software version 5.0 (GraphPad Software Inc., San Diego, CA). The 

parameter, α, was used to determine the mode of inhibition for a representative compound.   

7.B.5. Mouse behavior assessment  

Male wild-type ICR mice (age 8 to 12 weeks) were purchased from Charles River 

Laboratories. Animals were maintained in temperature (25oC) and humidity-controlled (50–60%) 

rooms in groups of 4 – 5 with free access to food and water under a 12h/12h light/dark cycle.   

The TST were performed following the protocol of Steru et al and Yoshikawa et al with 

minor modifications [251, 252]. Briefly, mice were acclimated to the laboratory environment for 

3 hours before the experiment. Thirty minutes after intraperitoneal injection of saline or drug, the 

mice were individually suspended 60 cm above the laboratory bench by fixing their tails with 

adhesive tape to an acrylic bar. In dose-response studies, the wild-type mice received an 

intraperitoneal injection of a series of increasing doses of test compounds (0.1, 0.3, 1.0, 3.0, 10 

and 30 mg/kg). Saline, imipramine (20 mg/kg) and KEO-099 were used as controls. All behavioral 

experiments were performed blindly. The mice were filmed for 6 min and the recordings were 

stored for future analysis. Each recording was viewed three times and immobility time was scored 

(sec), providing a mean score for each animal. Tukey’s interquartile range was used to identify 

outliers in the dataset. Statistical differences were assessed using one-way ANOVA followed by 

Dunnett’s t-test (α=0.05) for multiple post-hoc comparisons.    
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7.B.6 hOCT3 homology modeling and docking studies       

hOCT3 homology models were constructed based on a comprehensive amino acid 

sequence alignment of hOCT3 with  Piriformospora indica high affinity phosphate transporter 

(PiPT, access number A8N031) [253-255]. The crystal structure of PiPT (PDB id 4J05) is currently 

recommended best template for OCTs [254]. The crystalized PiPT (resolution of 2.9 Å) was in an 

inward-facing occluded state with a bound phosphate in the membrane buried binding site [253]. 

The amino acid sequence alignment was performed using Clustal X. The homology model for 

hOCT3 was built using MODELLER (University of California at San Francisco, San Francisco, 

CA). MPP+ and 5 quinazolines (GSW-286, KEO-093, KEO-099, OIA-008 and MDA-049) were 

docked to the hOCT3 model using GOLD Suite (version 5.2). GOLD's default scoring function 

was used to score the ligand binding modes, and potential key amino acid residues were identified 

by analyzing the binding interaction energies. hOCT3 homology modeling and docking studies 

were done in collaborated with Dr. Dukat laboratory and Kavita Iyer.    

7.C Results 

7.C.1 Initial screening of quinazolines and guanidines as OCT inhibitors   

The inhibitory effects of quinazolines and guanidines were initially screened on three 

hOCTs and their murine orthologs using [3H]MPP+ as a prototypical substrate. Stably transfected 

hOCT1-expressing (HEK-hOCT1) cells showed marked accumulation of MPP+ (~33 fold) 

compared to empty vector transfected background control cells (139.8 ± 9.2 vs. 3.5 ± 0.1 pmol/mg 

protein/10 min, respectively; data not shown). HEK-mOct1 cells exhibited ~38.5 fold 

accumulation of MPP+ as compared to empty vector transfected background control cells (100.0 

± 8.2 vs. 2.6 ± 0.5 pmol/mg protein/10 min, respectively; data not shown). The known OCT 

inhibitor, quinine (200 µM), showed virtually complete inhibition of hOCT1- and mOct1-mediated 
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MPP+ uptake (>90% inhibition; Figure 7.1 A and B). The cell accumulation assay demonstrated 

that all test compounds (100 µM) except KAI-324 significantly inhibited hOCT1 activity (Figure 

7.1 A). In HEK-mOct1 cells, KEO-093, KEO-099, OIA-008, KAI-333, KAI-302, KAI-325 and 

KAI-324, each significantly inhibited mOct1 at 100 µM, while GSW-286, KAI-323, MD-354, 

MDA-057 and MDA-058 appeared to stimulate mOct1 transport activity and MDA-049 was 

without effect (Figure 7.1 B).      

The inhibitory effect of quinazolines and guanidines on hOCT2- and mOct2-mediated 

transport were examined next. Cellular accumulation of MPP+ was significantly increased in stably 

transfected hOCT2-expressing cells (~23 fold) as compared to background control (empty vector) 

cells (91.5 ± 5.7 vs. 3.9 ± 0.1 pmol/mg protein/10 min, respectively; data not shown). HEK-mOct2 

cells exhibited significantly higher accumulation of MPP+ (~23.7 fold) as compared to empty 

vector transfected background control cells (92.5 ± 1.3 vs. 3.9 ± 0.1 pmol/mg protein/10 min, 

respectively; data not shown). Quinine (200 µM) blocked (>85%) hOCT2- and mOct2-mediated 

MPP+ uptake (Figure 7.1 C and D). Similar to hOCT1, significant inhibition of hOCT2-mediated 

MPP+ transport was observed for all quinazolines and guanidines at 100 μM (Figure 7.1 C). All 

compounds except KAI-323 and MD-354 significantly inhibited mOct2-mediated MPP+ uptake 

(Figure 7.1 D).   

Stably transfected hOCT3-expressing (HEK-hOCT3) cells showed accumulation of MPP+ 

~30 fold greater than empty vector transfected background control cells (80.7 ± 8.1 vs. 4.4 ± 0.2 

pmol/mg protein/10 min; data not shown). Active transport was completely (95%) blocked by 

quinine at 200 µM and all quinazolines and guanidines at 100 μM (Figure 7.1 E and F). HEK-

mOct3 cells exhibited significantly higher accumulation of MPP+ (~23.7 fold) as compared to 

empty vector transfected background control cells (47.0 ± 3.6 vs. 1.2 ± 0.2 pmol/mg protein/10 
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min, respectively; data not shown). Marked inhibition of mOct3-mediated MPP+ transport by 

quinine was observed (Figure 7.1 F). In contrast to hOCT3, while all quinazolines significantly 

inhibited mOct3-mediated MPP+ uptake, only two guanidines, KAI-324 and KAI-325, 

significantly inhibited mOct3-mediated MPP+ uptake (Figure 7.1 F).      

7.C.2 Determination of IC50 values for quinazolines and guanidines    

Dose-response studies were conducted to estimate the IC50 values of quinazolines and 

guanidines for hOCT1, hOCT2 and hOCT3, as well as their murine orthologs (Figure 7.2, Table 

7.2). The IC50 values of quinazolines for hOCT1 were in the low micromolar range (1.3 µM to 

14.3 µM). The IC50 value of unsubstituted quinazoline GSW-286 for hOCT1 was estimated as 

14.3 ± 2.2 µM, which is 2-11 fold higher than substituted quinazolines (KEO-093, KEO-099, OIA-

008, KAI-333, MDA-049 and KAI-302). In addition, the IC50 values of six guanidines for hOCT1 

ranged from 0.9 µM to 761.9 µM. The IC50 value of unsubstituted guanidine KAI-323 for hOCT1 

was estimated as 41.1 ± 14.4 µM, which is 3 fold greater than unsubstituted quinazoline GSW-

286. Similar to quinazolines, the IC50 values of unsubstituted guanidine KAI-323 for hOCT1 were 

3–46 fold higher than some substituted guanidines including MDA-057, MD-354, MDA-058 and 

KAI-325. However, the IC50 value for benzyl substituted guanidine KAI-324 was determined as 

761.9 ± 254.7 µM, which was 19 fold greater than that for unsubstituted guanidine KAI-323. 

Species differences were observed between hOCT1 and mOct1. In general, lower inhibitory effects 

of quinazolines and guanidines were observed for mOct1 (greater IC50 values) as compared to 

hOCT1 (Table 7.2).     
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Figure 7.1 Inhibition profiles of quinazolines and guanidines on OCTs.  

 

Inhibition of (A) hOCT1-, (B) mOct1-, (C) hOCT2-, (D) mOct2-, (E) hOCT3- and (F) mOct3-

mediated MPP+ uptake by quinazolines (blue, 100 μM), guanidines (yellow, 100 μM) and quinine 

(black, 200 μM). The concentration of MPP+ was 1 μM, incubation time was 10 min, and data 

shown were corrected for non-specific background. Values are mean ± SD of triplicate values. *** 

denotes p < 0.001 as determined by one-way ANOVA followed by Dunnett’s t-test.   
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The IC50 values of substituted quinazolines (KEO-093, KEO-099, OIA-008, KAI-333, 

MDA-049 and KAI-302) for hOCT2 ranged from 9.0-26.4 µM, which are lower (higher affinity) 

than that for unsubstituted quinazoline GSW-286 (46.5 ± 0.6 µM). Similarly, chloride, methyl and 

t-butyl substituted guanidines (MDA-057, MDA-058 and KAI-325) exhibited 1.5-10 fold lower 

IC50 values for hOCT2 than that for unsubstituted guanidine KAI-323 (89.0 ± 12.2 µM). However, 

benzyl substituted guanidine KAI-324 was not significantly different from unsubstituted guanidine 

KAI-323. In addition, it was also observed that unsubstituted quinazoline GSW-286 has a lower 

IC50 value for hOCT2 than unsubstituted guanidine KAI-323. The IC50 values of the quinazolines 

and guanidines for hOCT2 were similar to that for mOct2 (Table 7.2). The IC50 values of KAI-323 

and MD-354 for mOct2 were not determined since they failed to show significant inhibition on 

mOct2 during the initial screening.   

Dose-response studies for hOCT3 and mOct3 indicated that unsubstituted quinazoline 

GSW-286 exhibited 2-26 fold higher IC50 values for hOCT3 than substituted quinazolines KEO-

093, KEO-099, OIA-008, KAI-333, MDA-049 and KAI-302. In particular, OIA-008, KAI-333 

and KAI-302 demonstrated highest affinity for hOCT3 among all test compounds with IC50 values 

in the nanomolar range. In addition, the IC50 value for unsubstituted guanidine KAI-323 was 

approximately 8 fold greater than that for unsubstituted quinazoline GSW-286 (99.8 ± 2.8 µM vs. 

12.2 ± 1.9 µM). Benzyl substituted guanidine KAI-324 exhibited the lowest IC50 value for hOCT3 

among all test compounds. Species differences were also observed between hOCT3 and mOct3 

cells. KEO-093, KEO-099, OIA-008, KAI-333, MDA-049, KAI-302 and KAI-325 demonstrated 

3-120 fold lower IC50 values for hOCT3 than that for mOct3.     

With the notable exception of KAI-324, all other test quinazolines showed preferential 

affinity for hOCT1 and hOCT3 as compared to hOCT2. In general, chloride, fluoride, methyl and 
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t-butyl substituted quinazolines and guanidines demonstrated decreased IC50 values (higher 

affinity) for hOCT1, hOCT2 and hOCT3, while benzyl substituted guanidine exhibited a higher 

IC50 values (poorer affinity) for hOCT1 and hOCT3.  
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Table 7.2 IC50 values of test compounds for hOCT1, hOCT2, hOCT3 and their murine orthologs.     

 Compounds 

IC50
a (µM) 

hOCT1 hOCT2 hOCT3 mOct1 mOct2 mOct3 

Quinazolines 

GSW-286 14.3 ± 2.2 46.5 ± 0.6 12.2 ± 1.9 NDb 31.8 ± 1.3 18.8 ± 2.3 

KEO-093 4.8 ± 0.7 9.0 ± 1.2 5.9 ±  2.3 38.2 ± 9.3 6.2 ± 0.5 15.9 ± 3.1 

KEO-099 3.0 ± 0.5 16.4 ±  2.7 3.9 ± 1.4 40.7 ± 13.7 13.0 ± 0.8 30.3 ± 13.0 

OIA-008 2.3 ± 0.5 13.3 ±  4.0 0.9 ± 0.1 45.2 ± 9.4 16.1 ± 5.5 13.9 ± 1.4 

KAI-333 1.3 ± 0.1 11.9 ± 0.2 0.47 ± 0.01 92.8 ± 1.1 19.2 ± 5.4 19.3 ± 4.3 

MDA-049 8.2 ± 2.2 12.1 ± 0.3 2.0 ± 0.4 ND 15.0 ± 0.5 12.7 ± 2.4 

KAI-302 4.6 ± 0.6 26.4 ± 0.7 0.46 ± 0.02 69.2  ± 2.6 50.7 ± 7.5 56.3 ± 14.6 

Guanidines 

KAI-323 41.1 ± 14.4 89.0 ± 12.2 99.8 ± 2.8 ND ND ND 

MDA-057 10.0 ± 0.6 18.9 ± 0.1 2.8 ± 0.7 ND 14.2 ± 0.4 ND 

MD-354 13.7 ± 0.8 60.5 ± 4.1 7.6 ± 0.7 ND ND ND 

MDA-058 10.0 ± 0.2 9.3 ± 4.8 4.6 ± 1.1 ND 22.1 ± 2.4 ND 

KAI-325 0.9 ± 0.2 8.3 ± 3.9 2.2 ± 0.2 18.3 ± 1.0 5.0 ± 1.0 46.0 ± 2.1 

KAI-324 762 ± 255 96.2 ± 8.0 452.5 ± 87.9 82.0 ± 0.9 92.5 ± 4.3 492 ± 128 

a IC50 values were expressed as mean ± SEM from triplicate determinations.  

b ND, not determined.   
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Figure 7.2 (A) Dose-response curves for quinazolines and guanidines on hOCT1.  

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-hOCT1 cells 

in the presence of increasing concentrations of quinazolines and guanidines (10-9 to 10-3 M) 

are shown. Data were corrected for nonspecific background measured in the empty vector 

control cells and are means ± SD of triplicate values. IC50 values were determined with 

nonlinear regression and the “log(inhibitor) versus response” model using GraphPad Prism 

software. 
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Figure 7.2 (B) Dose-response curves for quinazolines and guanidines on mOct1.  

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-mOct1 cells 

in the presence of increasing concentrations of quinazolines and guanidines (10-7 to 10-2.7 

M) are shown. Data were corrected for nonspecific background measured in the empty 

vector control cells and are means ± SD of triplicate values. IC50 values were determined 

with nonlinear regression and the “log(inhibitor) versus response” model using GraphPad 

Prism software. 
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Figure 7.2 (C) Dose-response curves for quinazolines and guanidines on hOCT2.  

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-hOCT2 cells 

in the presence of increasing concentrations of quinazolines and guanidines (10-8 to 10-2.3 

M) are shown. Data were corrected for nonspecific background measured in the empty 

vector control cells and are means ± SD of triplicate values. IC50 values were determined 

with nonlinear regression and the “log(inhibitor) versus response” model using GraphPad 

Prism software.  
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Figure 7.2 (D) Dose-response curves for quinazolines and guanidines on mOct2.    

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-mOct2 cells 

in the presence of increasing concentrations of quinazolines and guanidines (10-7 to 10-2.7 

M) are shown. Data were corrected for nonspecific background measured in the empty 

vector control cells and are means ± SD of triplicate values. IC50 values were determined 

with nonlinear regression and the “log(inhibitor) versus response” model using GraphPad 

Prism software.    

 



www.manaraa.com

 

 

113 
 

 

 

0

50

100

-9 -8 -7 -6 -5 -4 -3 -2Control

log [GSW-286] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-9 -8 -7 -6 -5 -4 -3Control

log [KEO-093] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-9 -8 -7 -6 -5 -4 -3Control

log [KEO-099] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-9 -8 -7 -6 -5 -4 -3Control

log [OIA-008] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

150

-9 -8 -7 -6 -5 -4Control

log [KAI-333] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-9 -8 -7 -6 -5 -4Control

log [MDA-049] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

150

-9 -8 -7 -6 -5 -4Control

log [KAI-302] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-7 -6 -5 -4 -3 -2Control

log [KAI-323] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-9 -8 -7 -6 -5 -4Control

log [MDA-057] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-8 -7 -6 -5 -4 -3 -2Control

log [MD-354] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-8 -7 -6 -5 -4Control

log [MDA-058] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-8 -7 -6 -5 -4 -3 -2Control

log [KAI-325] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

0

50

100

-6 -5 -4 -3 -2Control

log [KAI-324] M

M
P

P
+
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

 
Figure 7.2 (E) Dose-response curves for quinazolines and guanidines on hOCT3.  

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-hOCT3 cells 

in the presence of increasing concentrations of quinazolines and guanidines (10-8 to 10-2.7 

M) are shown. Data were corrected for nonspecific background measured in the empty 

vector control cells and are means ± SD of triplicate values. IC50 values were determined 

with nonlinear regression and the “log(inhibitor) versus response” model using GraphPad 

Prism software.  
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Figure 7.2 (F) Dose-response curves for quinazolines and guanidines on mOct3.   

 

Representative data showing 1 min uptake of MPP+ (1 µM) measured in HEK-mOct3 cells 

in the presence of increasing concentrations of quinazolines and guanidines (10-7 to 10-2.7 

M) are shown. Data were corrected for nonspecific background measured in the empty 

vector control cells and are means ± SD of triplicate values. IC50 values were determined 

with nonlinear regression and the “log(inhibitor) versus response” model using GraphPad 

Prism software.  
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7.C.3 Inhibition potencies of KEO-099 for hOCT2-mediated 5-HT uptake    

The inhibitory effect of KEO-099 on transport activity of hOCT2 was further 

assessed using 5-HT as the substrate. Time-course studies were performed to assess the 

initial rate period for hOCT2-mediated 5-HT uptake. The initial phase was defined as the 

period where uptake rate increased linearly with time. The results demonstrated that 

hOCT2-mediated uptake was linear for at least the first 5 min (Figure 7.3), therefore a 3 

min incubation time was used in all kinetic studies. Dose-response studies were performed 

to determine the Km value of 5-HT for hOCT2. Increased 5-HT accumulation in hOCT2-

expressing cells was observed in the presence of increasing concentrations of substrate 

(Figure 7.3). The curve was fit to the Michaelis-Menten equation, and the estimated Km 

value for 5-HT on hOCT2 was 227 ± 4 µM.  

The inhibitory effect of KEO-099 on monoamine uptake mediated by hOCT2 was 

then evaluated using [3H]serotonin. Quinine (200 µM) and KEO-099 (100 µM) 

significantly inhibited hOCT2-meidated 5-HT uptake (Figure 7.4 A). In the presence of 

increasing concentrations of KEO-099 (0.01-1000 µM), decreased transport activity for 

hOCT2 was observed (Figure 7.4 B). The IC50 value of KEO-099 for hOCT2 was estimated 

as 0.56 ± 0.08 µM, respectively.        
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Figure 7.3 hOCT2-mediated 5-HT and MPP+ uptake.   

 

(A) Time-dependent uptake of 5-HT by hOCT2. Time-dependent experiments were 

conducted for up to 30 min. The concentration of 5-HT was 1 µM. (B) Michaelis-Menten 

kinetics of 5-HT transport in hOCT2 cells. The concentration of 5-HT was 1 µM, and the 

uptake was measured for 3 min at room temperature. (C) Michaelis-Menten kinetics of 

MPP+ transport in hOCT2 cells. The concentration of MPP+ was 1 µM, and the uptake was 

measured for 1 min at room temperature. Substrate uptake was background corrected by 

subtracting the non-specific uptake as measured in the HEK-empty vector cells. The 

Michaelis constant (Km) value was calculated by nonlinear regression using the Michaelis-

Menten model.      



www.manaraa.com

 

 

117 
 

 

0 50 100 150

hOCT2

Quinine

KEO-099 ***

***

5-HT uptake (% of control)

(A)

0

50

100

-9 -8 -7 -6 -5 -4 -3Control

log [KEO-099] M

(B)

5
-H

T
 u

p
ta

k
e

(%
 o

f 
c
o

n
tr

o
l)

 
Figure 7.4 Inhibition of hOCT2-mediated 5-HT uptake by KEO-099.    

 

(A) Inhibition of hOCT2-mediated 5-HT uptake by KEO-099 (100 μM) and quinine (200 

μM). The concentration of 5-HT was 1 μM, incubation time was 10 min, and data shown 

were corrected for non-specific background. *** denotes p < 0.001 as determined by one-

way ANOVA followed by Dunnett’s t-test. (B) Dose-response curve for KEO-099 on 

hOCT2. Representative data showing 3 min uptake of 5-HT (1 µM) measured in hOCT2 

cells in the presence of increasing concentrations of KEO-099 (10-8 to 10-4 M) are shown. 

Data were corrected for nonspecific background measured in the empty vector control cells 

and are means ± SD of triplicate values. IC50 values were determined with nonlinear 

regression and the “log(inhibitor) versus response” model using GraphPad Prism software.  
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7.C.4 Mode of inhibition for hOCT2 and hOCT3  

To properly interpret the inhibition and subsequent modeling and quantitative 

structure activity relationship (QSAR) study data, the mode of inhibition between OCT 

substrate and the inhibiting quinazoline and guanidine compounds must be determined. 

MPP+ accumulation was linear for at least 1 min and the Km values were determined as 6.9 

µM and 32.1 µM for hOCT2 and hOCT3, which are comparable to the reported values in 

the literature [3]. Therefore, saturation analysis studies were performed for hOCT2 and 

hOCT3 in the absence and presence of two different concentrations of representative 

quinazoline (KEO-099) and guanidine (MDA-057 and KAI-325) compounds. Substrate 

uptake curves were fit to the equations for mixed-model inhibition, and α values were 

calculated for each compound. All estimated α values were greater than 1, indicating that 

KEO-099, MDA-057 and KAI-325 were competitive inhibitors of hOCT2- and hOCT3-

mediated transport (Table 7.3).       

 

 

 

Table 7.3 Estimated α values from mixed-model inhibition analysis.    

 

Compound hOCT2 hOCT3 

KEO-099 24.6 25.1 

MDA-057 34.0 23.0 

KAI-325 7.8 17.5 

Quinine 6.5 3.9 
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7.C.5 Mouse behavior studies   

Three compounds, KEO-099, GSW-286 and MDA-057, were selected as lead 

compounds based on in vitro data. The ED50 value for KEO-099 was determined as 0.23 

mg/kg previously [248]. In this study, imipramine (20 mg/kg) significantly decreased the 

total time spent immobile during 6 min measurement in the TST as compared to the saline 

group (57.6 ± 7.5 seconds vs 6.9 ± 2.9 seconds, Figure 7.5). The antidepressant-like activity 

for KEO-099 was confirmed, as KEO-099 (1 mg/kg) significantly reduced the total time 

spent immobile to 2.8 ± 0.8 seconds. However, unsubstituted quinazoline GSW-286 (0.1 – 

30 mg/kg) did not produce a significant decrease in the total time immobile during the TST 

as compared to the saline group (Figure 7.5). Although the chloride substituted guanidine 

MDA-057 decreased the total time spent immobile in the TST at 3 mg/kg (57.63 ± 7.52 vs. 

24.0 ± 8.5), no statistical differences were observed in the ANOVA test due to the large 

experimental error. The other doses of MDA-057 did not significantly change the total time 

spent immobile in the TST (Figure 7.5).     
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Figure 7.5 Tail suspension test for KEO-099, GSW-286 and MDA-057.  

Upper panel: total time spent immobile after administration of imipramine (20 mg/kg), 

KEO-099 (1 mg/kg) and different doses of GSW-286. Lower panel: total time spent 

immobile after administration of imipramine (20 mg/kg), KEO-099 (1 mg/kg) and different 

doses of MDA-057. Effects are reported as mean ± SEM (second) in the mouse TST (n = 

8 – 11 mice/treatment). Asterisk (***) denotes a significant difference compared to saline 

group (p < 0.05).    
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7.C.6 Homology modeling and docking studies for hOCT3  

The amino acid sequence of hOCT3 (UniProt: O75751) and the approximate 

location of the predicted transmembrane domains were obtained from the literature [256, 

257]. The amino acid sequence and predicted transmembrane domains of PiPT were 

obtained from PDB (PDB:4J05, accession number: A8N031). Clustal X was used to align 

the peptide sequences between hOCT3 and PiPT. A total of 100 homology models of 

hOCT3 were constructed using MODELLER v9.12 (University of California at San 

Francisco, San Francisco, CA). The best model was selected and the loops and side chains 

were refined by MODELLER (Figure 7.6).   

The conformation and charge distribution of MPP+ and quinazolines were 

optimized with energy minimization using tripos force field with Gasteiger–Hückel 

charges in SYBYL-X 2.1. MPP+ docked to hOCT3 through 100 iterations using 

GOLDSuite 5.2 and GOLD's default scoring function was utilized to select binding modes. 

The results obtained were analyzed by cluster analysis to find the modes exhibiting similar 

docking poses, and two plausible binding modes were identified (Figure 7.6). Quinazolines 

were further docked into the substrate binding site of hOCT3, and the critical amino acid 

residues that interacted with MPP+ and quinazolines were identified (Figure 7.7 and Table 

7.4). The results suggested that guanidine N-atoms of quinazolines interacted with D478 

(TM11) through a salt-bridge interaction, and the guanidine moiety of quinazolines 

interacted with the aromatic rings of W223 (TM4) and F165 (TM2) through a cation-π 

interaction. In addition, hydrophobic interactions were observed for the substituted group 

of quinazolines with the following amino acid residues: KEO-099 and MDA-049 with 

A362, Y365 and Q366 and OIA-008 and GSW-286 with A362.          



www.manaraa.com

 

 

122 
 

 

 

Figure 7.6 The homology models of hOCT3 and two modes of binding for MPP+.  

The homology models of hOCT3 were constructed using the crystal structure of inward-

facing conformation of PiPT (PDB number: 4J05). This model was done in collaboration 

with Dr. Dukat laboratory and Kavita Iyer.   
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Figure 7.7 Docking the quinazolines into the binding pocket of hOCT3.  
 

Ionic bond interactions are indicated by red dotted lines. Orange: KEO-099; pale green: 

OIA-008; magenta: GSW-286; cyan: KEO-093; red: MDA-049. This model was done in 

collaboration with Dr. Dukat laboratory and Kavita Iyer. 
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Table 7.4 Summary of key amino acid residues identified in docking studies of 

quinazolines on hOCT3.    

 

Quinazolines Interactions Amino acids 

GSW-286 

Ionic salt-bridge 

Cation-π 

Hydrophobic 

D478 

F165 and W223 

A362 

KEO-093 

Ionic salt-bridge 

Cation-π 

Hydrophobic 

D478 

F165 and W223 

L23 

KEO-099 

Ionic salt-bridge 

Cation-π 

Hydrophobic 

D478 

F165 and W223 

A362, Y365and Q366 

OIA-008 

Ionic salt-bridge 

Cation-π 

Hydrophobic 

D478 

F165 and W223 

A362 

MDA-049 

Ionic salt-bridge 

Cation-π 

Hydrophobic 

D478 

F165 and W223 

A362, Y365, Q366 
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7.D DISCUSSION      

According to the global burden of disease study 2010, depression is the fourth 

leading cause of illness-induced disability, and it is predicted that depression will reach 

second place by 2020 [258]. Although a number of drugs are used clinically in the treatment 

of depression, approximately one-half of depressed patients failed to find relief using 

current therapies, especially in mild or moderate cases of depression [243, 245-247]. This 

may be due to the presence of multiple clearance pathways for monoamine 

neurotransmitters in brain subject to different modes of regulation. Undesirable side effects, 

such as weight loss, increased bone fracture risk and gastrointestinal effects, are also often 

observed in the clinical application of antidepressants [244]. Thus, there is an unmet need 

to develop antidepressants with a novel mechanism of action and greater efficacy than 

existing antidepressants. Recently, hOCT2 and hOCT3 have been discovered as key 

components of uptake-2 and suggested to play an important role in regulating 

neurotransmitter clearance in brain [91, 92]. In addition, a number of antidepressants 

currently in use, such as fluoxetine, desipramine and sertraline, are now known to be 

effective OCT inhibitors in vitro [259, 260]. Currently, it remains unclear what, if any, role 

OCTs may have in their therapeutic action of these compounds, however, together these 

data suggest OCTs may be viable therapeutic targets in depression. Certainly, at a 

minimum, an impact on CNS clearance appears likely.   

The quinazoline and guanidine compounds examined in this study are a novel series 

of compounds developed as potential novel therapeutic agents for depression [248]. 

Although their binding affinities for SERT and NET were greater than 10 µM, a chloride 

substituted quinazoline demonstrated potent antidepressant-like effects in mice [248]. In 
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the present study, the interactions of thirteen quinazoline and guanidine compounds with 

OCTs were studied. The inhibitory effects of the quinazoline and guanidine compounds 

varied according to the modification of their structures. Overall, hOCT2 was least sensitive 

to inhibition, with the notable exception of the benzyl substituted guanidine KAI-324 

which exhibited 5-8 fold higher affinity for hOCT2 over hOCT1 and 3 (Table 7.2).   

Guanidine compounds lack the methylene bridge structure in the quinazoline ring, 

and have a rotatable bond between the guanidino group and the phenyl group (Table 7.1). 

Unsubstituted guanidine (KAI-323) had a poor affinity (higher IC50 value) for hOCT1-3 as 

compared to unsubstituted quinazoline (GSW-286), indicating that the flexible open ring 

structure of guanidine compounds was unfavorable for interaction with hOCT1-3. In 

addition, substituting R1-R3 positions of quinazoline and guanidine compounds with 

different functional groups changed their inhibitory effects for hOCTs. Chloride and 

fluoride are electron withdrawing groups, while methyl, t-butyl and benzyl are electron 

donating groups. However, both electron withdrawing groups (i.e., chloride and fluoride) 

and electron donating groups (i.e., methyl and t-butyl) increased the affinities of 

quinazoline and guanidine compounds for hOCT1-3 as compared to the unsubstituted 

compounds. These results indicated that steric effects, rather than polar effects, impact the 

affinity of quinazolines and guanidines for hOCTs. It was also observed that R1 is the most 

favorable substitution position for quinazoline compounds for hOCT3, as both chloride 

and methyl substituted quinazolines at R1 position exhibited 4-6 fold increased inhibitory 

effects (lower IC50 values) for hOCT3 as compared to those for R2 and R3 substituted 

compounds. On the contrary, a large benzyl group (KAI-324) decreased the inhibitory 

effects of guanidine compounds for hOCT1 and hOCT3, possibly due to the unfavorable 
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steric effects. Although the affinity of this compound for hOCTs overall is somewhat poor, 

its in vitro profile suggests it to be a hOCT2-selective inhibition and this is being 

investigated further. Both species similarities and differences were observed between 

human and mouse OCT orthologs. In general, murine orthologs were less sensitive to 

inhibition by the test compounds as compared to human (Table 7.2). The IC50 values of 

quinazoline and guanidine compounds for mOct2 were comparable (0.6 to 2.3 fold) to 

those for hOCT2, whereas relatively weaker inhibitory effects were observed for mOct1 

and mOct3 than those for hOCT1 and hOCT3, i.e. there was no trend for mOct2 to be less 

sensitive to inhibition as compared to mOct1 an dmOct3.     

Three lead compounds, KEO-099, GSW-286 and MDA-057 were selected for in 

vivo testing based on in vitro inhibitory profiles. KEO-099 is the chloride substituted 

quinazoline. GSW-286 is the unsubstituted quinazoline, and MDA-057 is the chloride 

substituted guanidine. The in vitro inhibitory effect of KEO-099 vs. 5-HT for hOCT2 was 

~30 fold stronger (lower IC50 value) than that determined using MPP+, indicating that a 

nanomolar level of lead compound might provide sufficient inhibition on uptake-2 in vivo. 

KEO-099 exhibited potent antidepressant-like effects in the TST with ED50 value 

determined as low as 0.23 mg/kg [248]. However, unsubstituted quinazoline and chloride 

substituted guanidine failed to show significant CNS pharmacological effects in the TST 

(Figure 7.5), suggesting that both substitution groups and the methylene bridge might be 

important for the pharmacological effects of these compounds. Further pharmacological 

and pharmacokinetic studies should be performed on KEO-099 as well as other compounds.            

To provide hOCT structural information to our data interpretation, we constructed 

a 3-D homology models for hOCT3 and performed docking studies for MPP+ and 
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quinazolines. The protein structures of OCTs are not available due to the difficulties 

associated with crystallization of membrane proteins. A high-resolution crystal structure 

of PiPT was used as the template which shared 21% amino acid sequence similarity with 

hOCT3 [253-255]. As compared with Lactose Permease transporter used previously for 

OCT homology models, PiPT and OCTs belong to the same major facilitator superfamily 

and share a higher amino acid sequence similarity [254-256]. A central binding pocket in 

hOCT3 was chosen for both MPP+ and quinazolines, since quinazolines demonstrated a 

competitive mode of inhibition on hOCT3 (Figure 7.7, Table 7.2). The homology modeling 

studies suggested that hOCT3 interacted with docked compounds through TMDs 1, 2, 4, 7 

and 11. A number of potential key amino acid residues in hOCT3 were identified: F165, 

W223, A362, Y365, Q366 and D478. Whether these residues truly represent transporter-

substrate contact points requires further investigation.                 

In summary, thirteen quinazolines and guanidines were identified as potent 

inhibitors for hOCTs/mOcts. The inhibitory effects of quinazolines and guanidines with 

hOCTs/mOcts were compared and lead compounds were selected based on in vitro profiles. 

KEO-099 demonstrated potent antidepressant-like effects in the TST, while GSW-286 and 

MDA-057 failed to show antidepressant-like activities. This study suggested that novel 

OCT inhibitors such as quinazolines have the potential to possess antidepressant-like 

effects even if they did not target SERT or NET. In addition, we performed the homology 

modeling and docking studies for hOCT3. The mode of inhibition studies showed that 

representative quinazoline and guanidine compounds competed for the same binding 

pocket with MPP+ in hOCT2 and hOCT3. The homology models of hOCT3 were 

developed, and several amino acid residues were identified by docking studies. This 
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homology model of hOCT3 could be further used to support 3-D QSAR for designing the 

next generation of quinazolines and guanidines.            
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CHAPTER 8 

 

 

OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

 

 

A major function of the polyspecific organic cation OCTs/OATs (SLC22 

transporter family) is to exert selection control over the influx of small molecules across 

cell membranes [2, 3, 6]. Since OCTs/OATs are widely expressed in various peripheral 

barrier organs, they contribute to the uptake into and secretion from enterocytes, 

hepatocytes renal proximal tubular cells for a broad variety of endogenous and exogenous 

compounds [2, 3, 6]. The activity of OCTs/OATs can be altered by a second drug via 

inhibition, and thus drug-drug interaction may occur during combination therapy when 

transporter substrates and inhibitors are administered together [191]. In addition, 

hOCT2/mOct2 and hOCT3/mOct3 are highly expressed in neurons and glial cells in brain, 

and many monoamine neurotransmitters including serotonin (5-HT), norepinephrine (NE) 

and dopamine (DA) are their substrates [52, 91, 92]. Thus, OCTs appear to be an important 

component of uptake-2 and may participate in the regulation of neurotransmitter clearance 

in the central nervous systems (CNS). In this study, we began to explore the potential role 

of OCT inhibitors in mood disorders, as well as the roles of OCTs/OATs in drug 

transporter-mediated drug-drug interaction.     
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Despite widespread multimorbidity, most clinical therapeutic guidelines are written 

based on the condition of a single disease and the impact of applying complex multiple 

drug regimens during polypharmacy is generally not well understood. The potential for 

transporter mediated drug-drug interactions (DDIs) during combination therapy can be 

assessed by in vitro drug transporter expressing cell models [129]. In chapter 3 to chapter 

5, we investigated the inhibitory effects of five different drugs on OCTs and OATs and 

evaluate their potential in transporter-mediated DDIs. Rhein, a major metabolite of the 

prodrug diacerein and a major component of the medicinal herb Rheum sp., is used for its 

beneficial effects in a variety of clinical applications including the treatment of 

osteoarthritis and diabetic nephropathy [116-119]. In chapter 3, the inhibitory effects of 

rhein on hOAT1, hOAT3, hOAT4, and mOat1 and mOat3 were examined in heterologous 

cell lines stably expressing each transporter in isolation. Rhein was shown to potently 

inhibit hOAT1 and hOAT3, with IC50 estimates in the low nanomolar range (IC50 = 77.1 ± 

5.5 nM and 8.4 ± 2.5 nM, respectively), while poor affinity was observed for hOAT4 (IC50 > 

100 mM). Marked species differences were observed with hOAT1 and hOAT3 exhibiting 

3- and 28-fold higher affinity for rhein as compared to their murine orthologs. The 

estimated DDI indices (>>0.1) indicated a very strong potential for clinically relevant, 

rhein perpetrated DDIs mediated by inhibition of hOAT1 (DDI index = 5.0; 83% inhibition) 

and/or hOAT3 (DDI index = 46; 98% inhibition) transport activity. These results suggested 

that rhein, from herbal medicines and/or prodrug conversion, may significantly impact the 

dosing, efficacy and toxicity (i.e., pharmacokinetics and pharmacodynamics) of co-

administered hOAT1 and/or hOAT3 drug substrates. 
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Tuberculosis is a serious and worldwide disease that infect ~9 million people and 

causes about 1.4 million deaths every year [136]. Moreover, the frequency of comorbidity 

with HIV and with diabetes is on the rise, increasing the risk of these patients for 

experiencing DDIs due to polypharmacy [154]. Ethambutol, a first-line antituberculosis 

drug, is an organic cation at physiological pH, and its major metabolite, EDA, is 

zwitterionic [145]. In chapter 4, we assessed the effects of ethambutol and 2,2’-

(ethylenediimino)dibutyric acid (EDA) on the function of hOCT1, hOCT2, and hOCT3 

and that of EDA on hOAT1 and hOAT3. Potent inhibition of hOCT1- and hOCT2-

mediated transport by ethambutol was observed, and IC50 values of ethambutol were 

determined as 92.6 ± 10.9 and 253.8 ± 90.8 µM for hOCT1 and hOCT2, respectively. 

Ethambutol exhibited much weaker inhibition of hOCT3 (IC50 = 4.1 ± 1.6 mM); however, 

significant inhibition (>80%) was observed at physiologically relevant concentrations in 

the GI tract after oral dosing. EDA failed to exhibit any inhibitory effects that warranted 

further investigation. DDI analysis indicated a strong potential for ethambutol interaction 

on hOCT1 expressed in enterocytes and hepatocytes and on hOCT3 in enterocytes, which 

would alter absorption, distribution, and excretion of coadministered cationic drugs, 

suggesting that in vivo pharmacokinetic studies are necessary to confirm drug safety and 

efficacy. In particular, TB patients with coexisting HIV or diabetes might experience 

significant DDIs in situations of coadministration of ethambutol and clinical therapeutics 

known to be hOCT1/ hOCT3 substrates, such as lamivudine or metformin. 

The alkaloids matrine and oxymatrine are widely used in herbal medicine for the 

treatment of cancer, as well as viral, and cardiac diseases [179-182]. Their physicochemical 

properties indicated that they are potential inhibitors for hOCTs, leading to drug–drug 
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interactions. In chapter 5, we assessed the inhibitory effects of matrine and oxymatrine on 

the function of hOCT1, hOCT2 and hOCT3 using stably transfected transporter-expressing 

cells. At 100-fold excess, oxymatrine exhibited marked inhibition of hOCT1-mediated 

substrate uptake, while matrine failed to produce significant inhibition on hOCT1. The IC50 

value for oxymatrine on hOCT1 was estimated as 513 ± 132 μM. While there was no 

significant inhibition of hOCT2 or hOCT3 at 100-fold excess, oxymatrine and matrine 

showed 42% and 88% inhibition of hOCT3-mediated substrate uptake at 3 and 6 mM, 

respectively. Considering the potential intestinal lumen and reported plasma concentrations 

of matrine and oxymatrine, these data suggest that drug–drug interactions may occur during 

hOCT1-mediated hepatic and renal uptake and during hOCT3-mediated intestinal 

absorption.     

In addition, we focused on the potential role of OCTs in CNS action of drugs of 

abuse. Synthetic cathinones have recently emerged in the US and Europe and grown to be 

popular drugs of abuse [203, 261]. These drugs have the ability to modulate 

neurotransmitter levels in brain and possess amphetamine-like properties [204-206]. 

Serious adverse effects and deaths are often reported in synthetic cathinone users who 

required medical care [218, 219, 222]. In chapter 6, we explored the inhibitory effects of 

five synthetic cathinones (mephedrone, methylone, methylenedioxypyrovalerone (MDPV), 

R(+)methcathinone and S(-)methcathinone) on hOCT1, hOCT2 and hOCT3. All five 

synthetic cathinones demonstrated marked inhibition of substrate uptake mediated by 

hOCTs. Generally, the inhibitory potencies of test synthetic cathinones for hOCT1 and 

hOCT2 were higher (IC50: 6.5-31.5 µM) than those for hOCT3 (IC50: 130.5-334.7 µM). 

MDPV exhibited the highest potency (lowest IC50 values) for hOCT1 (6.5 ± 1.3 µM), 
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hOCT2 (16.7 ± 1.2 µM) and hOCT3 (130.5 ± 18.0 µM). The optical isomers of 

methcathinone exhibited different patterns of interaction with hOCTs. S(-)methcathinone 

demonstrated higher affinity for hOCT2 as compared to R(+)methcathinone, while the 

inhibitory effect of S(-)methcathinone on hOCT3 was lower than R(+)methcathinone. As 

hOCT2 and hOCT3 are important components of uptake-2 that modulate neurotransmitter 

homeostasis in the CNS, these findings suggested that the psychoactive effects of synthetic 

cathinones for drug abusers might be due to their inhibitory effects on hOCT2 and hOCT3. 

Moreover, cardiovascular complications caused by synthetic cathinones might also be 

caused by their inhibitory effects on hOCT3, since hOCT3 participates in the reuptake of 

NE in cardiac endothelial cells. Finally, the enhanced toxicities of synthetic cathinones 

when coadministered with other stimulants, such as codeine, morphine and heroin, might 

be explained by the high DDI potentials mediated by OCTs. Therefore, the role of OCTs 

in the psychoactive effects/clearance of synthetic cathinones as well as their potential in 

mediating in vivo DDI should be further investigated to elucidate the full mechanistic 

picture.     

The quinazolines and guanidines examined in this work represent a novel series of 

compounds developed as potential drugs that possess antidepressant-like effects. However, 

these compounds failed to produce significant inhibition of uptake-1 activity, since their 

binding affinity for SERT and NET were greater than 10 µM (Dr. Dukat laboratory, 

unpublished data). Based on their physicochemical properties, we hypothesized that these 

compounds might be OCT inhibitors and their antidepressant-like activities might involve 

an uptake-2 mediated mechanism. In chapter 7, we systematically assessed the inhibitory 

effects of thirteen quinazoline and guanidine compounds on three OCTs in two species, 
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human and mouse. At 100 µM, all of test compounds, including 7 novel quinazolines and 

6 guanidines, showed significant inhibition on three hOCTs. The IC50 values for 

unsubstituted quinazoline GSW-286 was smaller than unsubstituted guanidine KAI-323 

(IC50 values: 14.3 ± 2.2 µM v.s. 41.1 ± 14.4 µM). This is probably due to the flexible open 

ring structure of guanidine that decreased the affinity of KAI-323 for hOCTs. In addition, 

it was also observed that chloride, fluoride, methyl and t-butyl substituted quinazoline and 

guanidine compounds have lower IC50 values (2-46 fold) as compared with their 

unsubstituted forms, while benzyl substituted guanidine demonstrated higher (~19 and 5 

fold) the IC50 values for hOCT1 and hOCT3. Since depression is often associated with a 

decreased level of 5-HT in the CNS, OCT inhibition studies were conducted using 

radiolabeled 5-HT as the substrate. The IC50 value for KEO-099 vs 5-HT for hOCT2 was 

determined as 0.56 ± 0.08 µM, which is 29 fold higher than that determined using MPP+. 

This result suggested that a nanomolar level of KEO-099 might be sufficient to provide 

significant inhibition on uptake-2 in brain. Based on in vitro data, we selected three lead 

compounds that showed potent inhibition on both human and mouse OCTs to conduct 

further in vivo studies. KEO-099 demonstrated significant antidepressant-like effects 

during the tail suspension test (TST) with an ED50 value estimated as 0.23 mg/kg, while 

MDA-057 and GSW-286 failed to show significant antidepressant-like effects. This 

antidepressant-like effects of KEO-099 indicated that this compound is permeable across 

the blood brain barrier and is likely to exert its psychiatric effects in brain. Finally, the 

homology modeling of hOCT3 and docking studies were performed based on the 

knowledge of a competitive mechanism of inhibition of test compounds on hOCT3. In the 

docking studies, four key amino acid residues in hOCT3 were identified namely E451 
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(glutamic acid), D478 (aspartic acid), W223 (tryptophan) and F165 (phenylalanine). E451 

and D478 interacted with MPP+ and quinazolines via ionic salt bridge interaction, while 

W223 and F165 interacted with docking compounds through the cation-π interaction. The 

present study suggested that novel OCT inhibitors such as quinazolines have the potential 

to possess antidepressant-like activities, and the hOCT3 homology model could be used as 

a powerful tool for analyzing and predicting the interaction between hOCT3 and small 

molecules in future.   

In chapter 3 to 5, we evaluated DDI potential of OCT- and OAT-mediated drug-

drug interaction for ethambutol, rhein, matrine and oxymatrine. In the future, in vivo DDI 

studies are necessary for these compounds with known substrates for OCTs (e.g. metformin 

and lamivudine) and OATs (e.g., methotrexate) in order to optimize clinical safety and 

efficacy in these complex patient populations. In addition, the present study demonstrated 

that ethambutol, oxymatrine and matrine are inhibitors for OCTs, while rhein is a potent 

inhibitor for OATs. However, it remains unclear whether these compounds are non-

transported inhibitors or actually transporter substrates. This information is key to 

determining whether OCT- or OAT-mediated active uptake is involved in the hepatic 

accumulation or renal elimination of these compounds. As a result, a sensitive, robust, and 

precise bioanalytical method needs to be developed for quantification of these transporter 

inhibitors in cell lysate to address this issue.    

In addition, the role of OCTs in regulating 5-HT, NE and DA clearance in brain 

should be investigated in the following aspects. Firstly, it is important to characterize the 

permeability of quinazoline and guanidine compounds across the blood brain barrier (BBB) 

using appropriate in vitro models. The BBB is a highly selective barrier formed by brain 
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endothelial cells connected by tight junctions that separates the brain interstitial fluid in the 

CNS from the circulating blood [60]. A perquisite for a good CNS drug candidate is that it 

has a high permeability across the BBB; otherwise, it is not easy for the drug to reach its 

target organ. The in vitro cell-based BBB models are more cost-effective than animal 

experiments and have a higher throughput for drug screening. In addition, the permeability 

profiles of test compounds would support the decisions when prioritizing the lead 

compounds. Several in vitro BBB models have been developed, including  steric 

endothelial cells monoculture models, co-culture models of endothelial cells with glial cells, 

as well as more sophisticated 3D dynamic co-culture models of BBB [60]. A number of 

cell lines are available as biological surrogates for BBB, including HMEC-1, HCMEC/D3 

and TY08 [60]. Secondly, it is also important to determine the pharmacokinetics and brain 

distributions of lead compounds in vivo. In the present study, the TST was performed 

following the protocol of Steru et al and Yoshikawa et al [251, 252]. However, the brain 

distribution of lead compounds at 30 min after i.p. injection was not determined, and it is 

possible the compounds achieved their Cmax in brain longer than or shorter than 30 min. 

Information about the pharmacokinetics and the time-course profiles of the brain 

distribution of lead compounds would allow us to better characterize the maximum ED50 

of test compounds in mice. In addition, it would be even more informative if we could 

determine the extracellular regional concentrations of lead compounds by microdialysis in 

specific brain regions, such as hippocampus, frontal cortex and amygdala, where mOct2 

and mOct3 are richly expressed. This would allow extrapolation of in vitro data to 

in vivo level of inhibition on mOct2 and mOct3 in brain. Finally, mOct2 and mOct3 

knockout mice could be used as animal models to test the hypothesis that uptake-2 are the 
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targets for the antidepressant-like effects of guanidine and quinazoline compounds. The 

antidepressant-like effects of test compounds could be compared between wide-type and 

mOct2 or mOct3 knockout mice.       

As for the synthetic cathinones, it is important to find an appropriate animal model 

and conduct in vivo studies to elucidate the contribution of OCTs in the psychoactive 

effects of these compounds. This emphasizes the need to understand the potential species 

differences between human and murine OCTs.  The IC50 values of synthetic cathinones 

should be further determined using murine Oct expressing cell lines. After we identify an 

ideal animal model, the brain extracellular regional distribution of selected synthetic 

cathinones could be determined by microdialysis studies after intravenous administration. 

This information is critical for us to estimate the level of inhibition on Oct2 and Oct3 by 

synthetic cathinones in brain. The psychoactive effects of the synthetic cathinones could 

also be compared between wild-type and Oct2 knockout animal models. Finally, in order 

to evaluate OCT-mediated DDIs, it is necessary to conduct in vivo DDI studies for synthetic 

cathinones and known OCT substrate such as morphine.  
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